
Using Visual Studio .NET 2003, page 1 of 7

U s i n g V i s u a l C++ .NET
Editing And Compiling In Microsoft Windows

This explains in detail the steps in creating a console program using VisualC++ .NET 2003, in either the IDE
mode or the command line mode.

Note that there are some convenient screen control functions in Borland's TurboC++ that are not supported in
VisualC++: randomize , random, gotoxy, and clrscr, so you will find replacements for these at the end of this
writeup.

 1. IDE Mode:
The "Hello, World" program is used here as an example. This may look complicated due to its length, but it's
not -- it's just very detailed. These instructions are designed for our lab situation, so that the student CPP files
are stored on the floppy drive. Otherwise, they risk losing files stored on the hard drive in the event that a reboot
is required. Also, VisualC++ uses nearly 1MB of "workspace" files, which are hard to manage on a floppy. So
these instructions tell how to put the workspace files on the hard drive, and the source files on the floppy. The
same instructions apply for other removable media, such as USB drives, except for the letter designation of the
drive.

Start Visual C++ .NET
The PCs in DVC's computer labs have Microsoft VisualC++ .NET installed on them. Using the mouse, click the
Windows Start
button (located in
the lower left
corner of the
screen display).
Then hover the
mouse over
Programs from the
menu that pops
up, and wait for
another menu to appear to the
right of the first menu. When that
menu appears, locate Microsoft
Visual Studio .NET and hover
the mouse over it until another
menu appears. With the mouse,
point to and click Microsoft
Visual Studio .NET in that menu.
The program should appear on
the computer screen shortly.

Create a New C++ Project
In the VisualC++ window, click
the New Project button to begin a
new project. (Always use
projects when working with
Visual C++.)

Using Visual Studio .NET 2003, page 2 of 7

In the popup "New
Project" window that
appears, select Visual
C++ Projects, and Win32
Console Project.

Enter the "Location:"
c:\Windows\Desktop, or
in XP/2k, C:\Documents
and Settings\All
Users\Desktop. Enter the
project “Name:" as
HelloWorld. (Note that
there are no spaces in the
word HelloWorld -- it is
two words run together
without a space.) Click
the OK button to proceed
to the “application
wizard”.

In the application
wizard window, click
the Application
Settings link at the left.
Check the “Empty
project” option, and
click the Finish button.

The “Solution
Explorer” panel should
not appear on the
Visual C++ display.
Right-click over
“Source Files”, and
select Add->Add New
Item from the menu.

(For adding a CPP that
already exists, use Add
Existing Item instead.)

Using Visual Studio .NET 2003, page 3 of 7

Select the floppy drive (or
other removable media,
such as a USB drive E: as
shown in the example.)
Choose the C++ File
template, and type the name
HelloWorld. Click the
Open button to complete
the process.

(Note: this places the CPP
file on your floppy diskette,
making it easy to save your
work, and protecting your
files from loss due to
unexpected reboot of the
computer.)

Configure the Editor
It is better to use spaces (as
opposed to tabs) to ident
and align code, so that your
code looks the same in any
editor. To configure the
IDE’s editor to insert spaces when you press the TAB key, use
Tools->Options, and click the Tabs tab. Choose Text Eidtor->
C/C++->Tabs. Set the tab size and indent size both to 2 (or
another number of your liking), and select “Insert spaces”,
instead of “Keep tabs”. (To convert a file that already has tabs,
Use Edit->Select All and Edit->Advanced->Untabify Selection).

Type the Code for the Program
Using C++ language syntax, type your program into the window
titled HelloWorld.cpp . Type the following, with no indenting
on the first line of coding. Use 2-space indenting on the first
indented line. Skip single lines where indicated. There are three
different sets of enclosing symbols used -- the less-than and
greater-than symbols around iostream, the parentheses after main, and the curly braces where indicated. Be

sure to use upper-case and lower-case lettering where shown.

#include <iostream>
using std::cout;

int main()
{
 cout << "Hello, World\n";
 return 0;

}

Save your work to the computer's floppy drive using the File->Save
menu command.

Using Visual Studio .NET 2003, page 4 of 7

Compile and Run the Program
Press Ctrl-F7 to compile. If not successful, make corrections and repeat until successful. Press Ctrl--Shift- B
for a "full build", which includes linking, and if successful press F5 to run. You can also add cin.get(); to
suspend your program until a key is pressed -- otherwise, the DOS window disappears right away.

Distributing the Program
The compilation process creates an "executable" file named HelloWorld.exe. Your program in its compiled
form will run on any Windows 95/98/ME/NT/2000/XP computer, whether or not that computer has VisualC++
or any other C++ compiler.

But before distributing HelloWorld.exe, you should create a "Release"
version of the program -- because the EXE file is smaller. To do so,
use the pulldown menu on the toolbar, and change the selection from
Debug to Release. Then press Ctrl-Shift-B to rebuild -- this should
result in a new version of your EXE, located in a subfolder named
Release .

To run the executable, go to a command prompt (Start->All Programs->Accessories->Command Prompt) and
log into the drive and folder that contain the EXE file. Enter the name of the file, without the .exe filename
extension.

Managing Project Files
For backup purposes, all you need for
console programs are the source files
that you write – that is, the CPP (and H,
if any) files. When returning to the lab
for another editing session, create a new
project as you did originally, and add the
files to the project from your floppy
diskette.

To continue editing a project that
remains on your hard drive from a
previous editing session, use the Open
Project button on the opening screen of
Visual C++, instead of the New Project
button.

 2. Command Line Mode:
In order to use command line compiling,
first copy this file:

C:\Program Files\Microsoft Visual
Studio .NET

2003\Vc7\bin\vcvars32.bat

...to your C:\WINDOWS folder. This
has already been done on the computer
lab PCs, but it is renamed as vsvars32.bat, to distinguish it from the Visual C++ 6.0 version of this file.

Using Visual Studio .NET 2003, page 5 of 7

Use any text editor of your choosing, such as XP's Notepad, JNotePad, or Hesky-Data Pad. Then when you go
to a command prompt to compile and build, enter the command vcvars32 once to prepare for using the
command line editor.

When saving CPP files from Notepad, put the filename in quotes to prevent Windows from adding .txt to the
filename.

To compile, use a command like the following (the command is "see-el", not "see-one") to create an EXE file:

cl HelloWorld.cpp -EHs

To compile and build projects consisting of more than one CPP, list the CPPs separated by spaces, like this:

cl main.cpp Time.cpp -EHs

The EXE has the same name as the first (or only) listed CPP, but with the extension "exe". To run the program,
enter the name of the EXE on the command line -- you may leave off the trailing ".exe".

 To compile a CPP without building, include the -c flag -- this produces an OBJ file with the same name as
the listed CPP, but with the extension "obj":

cl Time.cpp -c -EHs

To build an EXE from already-compiled OBJs, list the OBJs and do not use the -EHs flag, like this (creating
main.exe):

cl main.obj Time.obj

When working with multiple CPP files in a single project, it is recommended to compile each CPP separately,
using the -c flag during development. This makes debugging easier. Once the program is working, and you are
making small code adjustments, then you should go back to compiling and building all in one command.

Using Visual Studio .NET 2003, page 6 of 7

Using XP’s Command Line Buffer
So that you do not have to retype the compile and run commands, use the up and down arrow keys to navigate
through previously-typed commands. Use the F7 key to popup a list of commands in the buffer.

The usual sequence is to type the compile and build command, followed by the run command. After that , up-up
returns to the compile and build command, and down goes from there to the run command.

How To: Use randomize And random In Visual C++
Add the following code below the include statements and above int main(), so that the randomize() and
random() functions referenced in the text's code listing work in VisualC++.

#include <cstdlib>
#include <ctime>
#define randomize() (srand(time(0)))
#define random(x) (rand() % x)

For example, call random(10) to get a randomly selected integer between 0 and 9, inclusive. The expression
(1 + random(6)) simulates the rolling of a 6-sided die. The expression (2 + random(6) + random(6))
simulates the rolling of two 6-sided dice. Every time you run your program you will get the same sequence of
random numbers, which is useful for debugging, but not so useful for the final product. Call randomize()
once in your program in order to get a new sequence every time your program runs. Usually this is the first
statement in the main function.

Using Visual Studio .NET 2003, page 7 of 7

How To: Use gotoxy And clrscr In Visual C++
TurboC++ has gotoxy and clrscr functions, which enable you to position the cursor on the screen (so that you
canput the contents of the next cout statement at a specific location) and to clear the screen. These functions do
not exist in VisualC++, but you can write them yourself. Here's a sample:

#include <iostream>
using namespace std;

#include <windows.h>
#include <process.h>

void gotoxy(int, int); // prototype
void clrscr(); // prototype

int main()
{
 // write text in 4 corners of the screen
 clrscr(); // function call
 gotoxy(10,10); // function call
 cout << "at 10,10";
 gotoxy(10,20); // function call
 cout << "at 10,20";
 gotoxy(20,10); // function call
 cout << "at 20,10";
 gotoxy(20,20); // function call
 cout << "at 20,20";
 return 0;

}

// function definition -- requires windows.h
void gotoxy(int x, int y)
{
 HANDLE hConsoleOutput;
 COORD dwCursorPosition;

 cout.flush();
 dwCursorPosition.X = x;
 dwCursorPosition.Y = y;
 hConsoleOutput = GetStdHandle(STD_OUTPUT_HANDLE);
 SetConsoleCursorPosition(hConsoleOutput,dwCursorPosition);

}

// function definition -- requires process.h
void clrscr()
{
 system("cls");

}

