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A graphical approach to Lindenmayer systems  

 
 

ABSTRACT 
This application  belongs to the category of Lindenmayer system representation applications. The 

Lindenmayer systems are used in the  computer game industry to draw certain textures and 3D elements 

(flowers, trees, etc.) being useful in the drawings which repeat at a smaller scale elements presented at a 

bigger scale of that figure. 

 

1. Introduction 

 

The central concept of a Lindenmayer system is that of rewriting. Rewriting is a 

technique for building complex objects by successively replacing parts of simple initial 

ones using a set of rewriting rules or productions. 

The idea of rewriting is not new, it was firstly introduced by Chomsky for the 

generating of strings. 

In 1905 Koch proposed the same mechanism for generating curves. 

 

2. Fundamental theoretical concepts of a Lindenmayer system 

 

Let V be an alphabet and }{* λΥ+=VV  the set of all strings (words) over V, 

where λ  is the zero-lengthed word. Any subset of  is called a language. *V

Definition 1.1 : An OL system is a tidy triplet ),,( PVG ω= where: 

•  is an alphabet V

•  and this symbol is called the axiom of the system +∈Vω

•  is a finite set of elements which are called productions kVVP ×⊂

• for each  there is at least one word Va∈ χ for which   Pa ∈),( χ  

[1]. 

 4



A production ),( χa  is denoted by: χ→a  since this represents the replacing of 

a with the symbol χ . 

The last condition from definition 1.1 is not restrictive. If for a symbol Va∈  

there is not any production Pa ∈),( χ  then the production  for P can be added. ),( aa

 Definition 1.2: An OL-system is deterministic (or DOL-system) if for each 

 there is one and only one word Va∈ Va∈  for which Pa ∈→ χ .[2] 

 Definition 1.3: Let  be an arbitrary word over V. It is said that 

the word  is directly derivative from 

*
1... Vaa k ∈=µ

*
1... Vaa k ∈=µ µ  and it is denoted by 

 if and only if  *
1... Vk ∈⇒ χχµ Pa ii ∈→ χ  for each },...,1{ ki ∈ . The reflexive 

and transitive closing of the “ ” relation is “ ” [3]; e.g. the development of the 

Anabaena Catenula filament can be described by a DOL system. The cytologyc states of 

a corpuscle are denoted by u and v. Using l and r to indicate the polarity of a corpuscle 

(left and right respectively), the development of the microorganism can be written by the 

DOL system below: 

⇒ *⇒

ru:ω  

rlr vuup →:1  

rlr uvup →:2  

rr uvp →:3  

ll uvp →:4  

Starting with theω  axiom the following are obtained: 

ru  

rlvu  

rrl uuv  

rlrll vuvuv  

………… 

Definition 1.4: A word v is generated by the G OL-system, ),,( PVG ω= , 

if there is derivation of the v word from ω ,  in G. v*⇒ω
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The language generated by G is: . [4] }/{)( * vvGL ⇒= ω

A word v is directly derivative from µ  using a process chraracterized by a 

parallel replacing. This means that all the symbols from µ  are replaced simultaneonsly 

with some words, which are defined using some productions. 

The Lindenmayer systems have many implications in the theory of formal 

languages in the moulding of the development of some microorganisms. 

 

Generating drawings using a Lindenmayer system 

 

 The “turtle” interpretation of a word is introduced. First of all, a turtle state is a 

triplet ),,( αyx , where (x,y) are the cartezian coordinates of a point and α  is the measure 

of the defined angle. The ),,( αyx  triplet is interpreted as follows: one can imagine a 

virtual pencil (or a turtle) which can draw a trace; (x,y) are the coordinates of the point 

where the virtual pencil is placed, and the angle α  is the direction straight forward. 

 d denotes the length of a segment and δ  a value which is used as a value of 

incrementation for the angle that defines the direction forward of the virtual pencil. 

 The basic controls for the virtual pencil are symbolized like this: 

F: move and draw forward with a step of length d. Thus, if the position of the 

virtual pencil is (x,y) then the new state is , where  and 

. A segment of line from the point (x,y) to the point (x’,y’) will be drawn. 

),,( '' αyx  cos' αdxx +=

αsin' dyy +=

f: move forward with a step of length d, without drawing anything 

+: rotation to the left with theδ  angle; if the actual turtle state is ),,( αyx , then 

the new turtle state will be . ),,( '' δα +yx

-: rotation to the right with theδ  angle; if the actual turtle state is ),,( αyx , then 

the new turtle state will be . ),,( '' δα −yx

[: remember the current position 

]: return to the last remembered position 
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A snapshot of commands for the virtual pencil is a word . Let it 

be supposed that the initial turtle state is 

*},,,{ −+∈ fFv

),,( 000 αyx . The angle 0α defines the direction 

forward. If an angle δ  and a word over the alphabet },,,{ −+fF  are taken then the road 

drawn by the virtual pencil is established.  

A Lindenmayer system where and each production is either *},,,{ −+∈ fFv

vF → or  with is considered. vf → +∈Vv

 

A segment of line F with the length d is transformed into broken line using a 

procedure which is described below. 

 

   A      B 

 Figure 1: The decod

  

 

Let A and B be the e

vFp →: , where . 

broken line with the extrem

which has the extremities A

recalculating the next step. F

*Vv∈

FFFFp +−→:

Decoding the snapsh

a step  and 2d 90=δ  the

obtained. Taking 

extremity coverlaps A then 

so far. The same transforma

4/2 dd =

 

C

ification of snapshot: F-F+F+FF-F-F+F

A 

xtremities of the segment. A production

Interpreting the snapshot of command

ities C and D is obtained.  is calcul

 and B and is replaced with the broke

or example consider the production: 

1d

FFFFF +−−+ . 

ot of commands FFFFFF ++−→

 line drawn with C and D as its extre

, where d is the length of the segment F 

the extremity D overlaps B. This is a on

tion is used for each segment of the po
D

 in a broken line 

B 

 Pp∈  is chosen i.d. 

s v with a step  a 

ated for the distance 

n line obtained after 

1d

FFF +−−  using 

mities in Figure 1 is 

denoted as AB, if the 

e step transformation 

lygonal line obtained 
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after the first step. Then this transformation for each segment of the polygonal line 

obtained next is repeated. 

Now, interpreting the axiom as a polygonal line, the initiator is obtained. 

For each segment of the the above discussed initiator transformation is used, then 

the procedure for each polygonal line obtained is repeated. This procedure can be 

repeated as many times as desired and the method obtained is called Koch’s 

Construction. 

  
Figure 2: Koch’s Construction 

 

For example, take into consideration the Lindenmayer system: 

FFFF −−−:ω  

FFFFFFFFFp +−−++−→:  

and let 90=δ . The initiator is a square. Using Koch’s Construction, the drawing 

in Figure 2 is obtained. 

 

3. Implementation remarks 

 

 
The application that was developed uses Java. To generate the drawing for a step 

bigger than 0, recursivity is used. Any expression which must be generated for “n” steps  

is reduced to “n-1” steps. Then, the expression becomes “n-2” reduced and so on until it 

reaches step 0. 

To represent the entire drawing, a scaling of it must be made. Before drawing, the 

maximum real value of the X coordinate, the maximum real value of the Y coordinate, 

the minimum real value of the X coordinate, the minimum real value of the Y coordinate 
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have to be calculated. The window where it will be drawn which is between 200 and 500 

is chosen. This is how the scalar factor will be found. Each point which will be shown on 

the screen will be multiplied with this factor, and after word if will be rounded to the 

closest integer and will be shown. 

The application has 3 options: Turtle, Tree (uses “[“ and “]” in writing) and 

Combination (shows the expression of ω , starting from step 0 to the specified step). 

Firstly the expression of F is introduced, then the expression of ω (Start) then the angle 

and the step and finally one of the options is chosen. If  Tree is chosen, ω (start) can 

deprive because only the expression of F will it be interpreted.  

 

4. The algorithm 

 

The input data is made of: 

ω : the initial figure; 

F: the transformation; (for the AB segment, F must reach B) 

δ : the winding angle; 

The algorithm  contains  5 steps: 

Step 1. Calculate the relation between the segment in step n and the one in step    

n + 1 

Step 2. Determine the real display window 

Step 3. Determine the screen display window 

Step 4. Determine the scaling factor from real space into screen space 

Step 5. The effective drawing of the picture 
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5. Experimental results: 

Results are shown below: 

 

 
 

6. Conclusions and future work: 

 

This application is not the fastest, but it can be optimized by pre-calculating the 

values of the sinuses and co sinuses. Further work can be added in order to extend this 

program to represent not only the  2D Lindenmayer systems but also the 3D Lindenmayer 

systems. 
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Admission decisions for candidates to a  

competition through Minsky frames 

Abstract  
 

In this paper some theoretical concepts of Minsky frames are presented and a practical illustration 
of these concepts is intended. The application could be used as a means of deciding acceptance of 
candidates at a competition. 
 

1. Introduction 
Proposed paper presents some of Minsky’s concepts and shows a practical 

implementation of this theory in a decision-making process regarding acceptance of 
candidates at a competition. 

Marvin Minsky is one of the inventors of the field of Artificial Intelligence. In fact, 
some call him the "father of Artificial Intelligence". He has contributed many important 
ideas and concepts to the field of AI. He was one of the first people to explore the area 
and he still remains as one of the leading researchers today. 

In the 1970’s he invented a form of knowledge representation known as "frames". 
These "frames" were a lot like forms that could be filled in with data. He could represent 
knowledge in many areas including language understanding and visual perception. These 
were not only useful to Artificial Intelligence, but they are considered to be some of the 
earliest forms of object oriented programming. But Minsky’s largest contribution was yet 
to come. 

What are frames? What problems are frames supposed to solve? How?  

Minsky tackles the problem of knowledge representation by creating a model of 
how we represent and store knowledge([2],[3]). It states that we organize and store our 
knowledge of the world symbolically through frame representation. A frame is a set of 
terminals containing characteristics of specific information. A system identifies 
information based upon the characteristics of the information held in the frame. 
Frames are supposed to solve the mystery of the organizational structure of knowledge in 
humans and other cognitive machines by solving problems such as efficiency, 
adaptability and sufficiency. Frames are sufficient to hold enough characteristics to 
identify the desired knowledge, they are highly organized and therefore efficient, and 
they are also adaptable because the information held in the frames is able to be 
manipulated based upon knew knowledge. 

 
2. Fundamental theoretical concepts of Minsky frames 
 
2.1 The intuitional aspect of the concepts 
 

    In this paragraph it is considered that a frame F  is characterized by the following 
elements([1]): 
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• a symbolic name which represents the name of the frame; each frame has a 
unique name; the name of the frame is used for its identification.  

 
• a finite set of symbolic names; each name represents the parent of the frame; a 

frame can have zero or more parents.   
 
• a finite set of slots; a slot is an orderly couple of (attribute, value), where 

attribute is the name of the frame’s property and value is the adequate value 
hereof.  

 
A frame is represented by a diagrammatic drawing as in Figure 1, where attributei≠  

attributej for i ≠ j. The number of parents and the number of slots can differ from frame 
to frame. Presume that the value V of  attribute A of frame F is wanted. The following 
cases are possible: 

 
• There exists a slot S formally denoted by (A,V) or (A,P), where V is the 

direct value of the attribute and P is the name of a procedure; in the first 
case V is the value of attribute A; in the second case, the value of the 
attribute is a value returned by the procedure P. 

• There is no slot of F so that A be the first component of the slot; in this 
case, what is tried is to find the value of the attribute with the help of the 
respective object parents, i.e. the value of the attribute A is hereditary; if 
none of the parents of F contain the respective attribute, their parents are 
used and so on. 

 
 

name_of_F 
name_of_parent_1 

………... 
name_of_parent_k 

attribute1 value1

…….. ……. 
attributen valuen

 
                                               Figure 1. The graphical representation of  a frame. 
 
 
 
 
 
2.2 The formal aspect 
        

       Syntactically, it is considered that a frame is a formal string([1]) 
                  frame(frame_name, list_of_parent_names, list_of_attributes)       (1) 
 
             where  

• frame_name is the name of the frame; 
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• list_of_parent_names is a list of  frame names which represent the 
parents; 

• list_of_attributes is a list of elements having one of the next forms: 
- attr(name_of_attribute, value); 
- attr(name_ of_attribute, proc(name_of_proc)); 
- attr(name_ of_attribute, daemon). 

 
The entity value represents the direct value of the attribute; name_of_proc 

represents the name of a procedure which calculates the value of the attribute; the word 
daemon means that there is an abstract attribute whose value can be calculated through a 
procedure or specified as the direct value of a particular object.    

Let a Knowledge Representation and Processing System(KRPS) based on frames be 
defined below. The elements of  language LRepr will be words of the form (1). As soon as 
we define the rules of constructing names of frames, names of attributes, names of 
procedures and attribute values, the elements of  LRepr can be constructed. VAttr denotes 
the set of all direct attribute values. The elements of VAttr can by homogeneous or 
heterogeneous. Hereby, VAttr can be a subset of the natural numbers set or can contain as 
well numbers (real, integer), alphabetical strings and number strings. Lfr_name denotes the 
set of names of frames, LAttr denotes the set of names of attributes and Lparent denotes the 
set of names of parents. Because any name of a parent is a frame name,  in general Lparent 

⊆  Lfr_name and in the case there are certain rules concerning the frames which can be 
parents then there is the strict inclusion Lparent ⊂ Lfr_name. Lproc denotes the set of names of 
procedures and consider the set { }.|)( procAttrAttr LxxprocVQ ∈∪= The sets Lfr_name, LAttr, 
Lparent and Lproc are formal languages and accordingly for each of them one of  the 
methods that define these languages are applied. 

Definition 2.1 The representation language LRepr  is the set of all words of the form: 
                        frame(name, [p1……pn],[attr(a1,v1),……,attr(ak,vk)])        (2) 

         where s ≥ 0, k ≥ 0, name � Lfr-name, {p1, . . . , ps} � Lparent,  {a1, . . . , ak} � 
LAttr ¸si vi �     
         QAttr �{daemon} for  i � {1, . . . , k} 
 
In relation with Definition 2.1 it can be said that the elements p1……pn are two by two 
distinct and the same thing can be told about the elements a1……ak. But then, the same 
condition for the values of  the attributes does not hold and consequently can have the 
case vi=vj and i≠j. In the syntactic structure of any word from LRepr  the entity frame and 
attr  are key words. 
 

 Definition 2.2 A finite set of frames syntactically represented by the form (2) is a 
knowledge base with frames. 

 
K, a knowledge base with frames is considered. Name(K) denotes that subset of the 

language Lfr_name having all elements X if there is a frame in K with  the name X.    
Having a knowledge base with frames K, an oriented graph Gk=(Name(K),ΓK) is 
considered where the nodes are names of frames from K and from node fu to node fv there 
exists an arc, that is (fu, fv) � KΓK, if fu belong to the list of fv parents. 
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The set of all paths from node x to node y in Gk is denoted by Path(x,y). The 
element f is an predecessor of g if f ≠ g and there exists a path from f to g. Pred(g) 
denotes the set of all predecessors of g. If f∈Pred(g) then dist(f,g) denotes the length of 
the shortest path from f to g. If dist(f,g)=k then it is said that the “distance” from f to g  is 
k. 

Definition 2.3 A predecessor f of g in the graph Gk is the nearest predecessor with 
the α property if the next two conditions are realized: 

• f satisfies the α property; 
• there is any predecessor of g, namely h, so that h satisfy the α property and 

dist(h,g)<dist(f,g) 
 
The nearest predecessor of g, N.P {α }(g ), denotes the set of all nodes that are the 

nearest predecessors of g and satisfy the α property. 
Generally, to obtain an admissible knowledge base of a KRPS, certain restrictions 

about components are suggested. Following up, the conditions which are imposed to a 
knowledge base with frames for being an admissible base are specified. 

A knowledge base K with frames is considered. The first condition that is imposed 
to K is named the C1 condition: 

  
                    frames (f,X,Y ) ∈ K ,frames (f,U,V ) ∈ K =>X =U,Y =V 
 
This condition imposes the requirement that all the parents and all the attributes of the 
frame to be defined in a single string of the form (2). 
 
Let us consider a certain frame 
 

frame f,[p1 ...,ps ],[attr(a1,  v1) ,...,attr(ak, vk )]) (3) 
 
 of  a knowledge base K with frames who satisfies the C1 condition. 
 
Because all attributes of frame f  are explicited in (3), so there are no other 

attributes for f  besides the attributes represented in (3) and the same property goes for the 
parents of that frame, there are the following notations: 

  
           Slot (f )= {(a1, v1) ,...,(ak,vk ) } 
           Parent (f )= {p1 ...,ps} 

Through language abuse it is said that the name of the attribute ai belongs to the 
frame f and it is written fai ∈ if there exists {daemonQu Attr ∪ }∈ so that 

. Sometimes it is said, equivalently, that f includes attribute a( ) ( fSlotuai ∈, ) i. 
 For any attribute  let it be denoted that: AttrLa∈
 
   if ; }{)( ffNeara = fa∈
   PNfNeara .)( = {include a}(f) if  fa∉ ; 
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 Below let it be denoted by C2, respectively C3, the following conditions: 
      
 Condition C2: For each name of frame f and for each name of  attribute a 

wherefore : )(),( fSlotdaemona ∈
Φ=⇒∈ )()(Pr gNearfedg a . 

      
 Condition C3: For any AttrLa∈ the set has at most one element. )( fNeara

 
The requirement of the C2 condition is bound by the mode that the daemon value of 

an attribute is used and interpreted. 
 
Definition 2.4. Let it be considered a knowledge base with frames K. The base K is 

called an admissible base if it satisfies  the conditions C1, C2, C3. 
 
A procedure name P, , is considered. The expression  is used 

in the following to denote the returned value of  the P procedure when the actual  
parameters of the procedure are the values 

ocLP Pr∈ ( tvvP ,,1 Λ )

tvv ,,1 Λ  . Generally, the   values are 
the values of the  attributes. Let it be denoted by

tvv ,,1 Λ

taa ,,1 Λ ),,()( 1 tAttr aaPDom Λ= . 
The value of an attribute can be an element of the set . },{ unknowndaemonVAttr ∪
The value returned by the procedure P can be: 
 

1) P(v1, . . . , vt) ∈ VAttr if v1, . . . , vt ∈ VAttr

2) P(v1, . . . , vt) = unknown if there exists i∈ {1, . . . , t} so that vi = unknown; 
3) P(v1, . . . , vt) = daemon if for each i ∈ {1, . . . , t}, vi∈ VAttr∈{daemon}  
and j∈  {1, . . . , t} so that vj = daemon; 

  
Let it be considered that: 

)}())(,(:),(/)(),{( Pr gSlotPprocaLPfNeargLKNameafN ocaAttrK ∈∈∃∈∃×∈=
 

If  f ∈ Name(K) and Neara(f)=∅  then (f,a)∉NK. 
 

Definition 2.5 Let K ∈ LKB be considered. The application ocKK LN Pr: →Ω  is 
defined so that : , where (a,proc(P)) ∈ Slot(g), g∈NearPafK =Ω ),( a(f). 
The application Ω K is called the extractive function for the knowledge base K. 
For each K ∈ LKB  the following set is considered: 
  

})(,),(|)(),{( Φ≠∉×∈= fNearNafLKNameafM aKAttrK  
 
The sets NK and MK  are disjunctive sets. 
 
Proposition 2.1  If  (f, a) ∈ MK then there exists an element and only one  u∈ 

VAttrΥ  {daemon} so that (a, u) ∈ Slot(g), where {g}=Neara(f). 
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Definition 2.6  Let K, an arbitrary element in LKB, be considered. The application 
is defined so that: },,{: _ daemonundefinedunknownVLLComp AttrAttrnamefrK ∪→×

• If  (f, a)∈ MK  then CompK(f, a)=u, where u  is the only one element from 
the set VAttr }{daemon∪  so that {g}=Neara(f) and (a, u)∈ Slot(g) 

• If  (f, a)∈ Nk and (b1, …, bt) =DomAttr( ),( afKΩ ) , then: 
- CompK(f, a)= )),(),...,,()(,( 1 tKKK bfCompbfCompafΩ , if  

 can be calculated. ),(),....,,( 1 tKK bfCompbfComp
- CompK(f, a)=undefined, if   

cannot be calculated. 
),(),....,,( 1 tKK bfCompbfComp

• If  )(\)(),( _ KKAttrnamefr NMLLaf ∪×∈  then . unknownafCompK =),(
 

The value CompK(f, a) of  the CompK  application in the (f, a) argument is the value 
of  the a attribute for the frame f. 

Let  be the query language and 
 be the answer language. 

AttrnamefrQ LLL ×= _

{ }daemonundefinedunknownVL AttrAns ,,∪=
 
 Definition 2.7 Let the inference relation � QKB LL ×⊆ be defined as follows: 
           K∈ (f ,a) only if }{),( daemonVafComp AttrK ∪∈ . 
 
Definition 2.8 The answer function AnsQKB LLLAns →×:  is defined hereby as 

follows: 
                        ),()),(,( afCompafKAns K= . 
 
 

3. Proposed application 
 

For the illustration of the above concepts let the problem of deciding admission of 
candidates at a competition. 

 
Let a knowledge base K be considered with the following elements:  
 

frame("candidate",[],[attr("accepted","proc(calcAccepted)"),                                   
                   attr("age","proc(calcAge)"), 
              attr("birthYear","proc(calcBirthYear)")]). 
 
frame("veronica",["candidate"],[attr("english","very good"), 
                                         attr("economy","9"),attr("birthYear","1974")]). 
frame("mihai",["candidate"],[attr("economy","10"),attr("age","28"), 
                                         attr("domicile","Craiova")]). 
frame("maria",["candidate"],[attr("english","satisfying"),attr("economy","9"), 
                                         attr("birthYear","1976")]). 
frame("ionel",["candidate"],[attr("english","good")]). 
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frame("aurel",["candidate"],[attr("english","very 
good"),attr("economy","10"),attr("age","14")]). 
frame("mirela",["candidate"],[attr("english","very good"),attr("economy","9")]). 
frame("simona",["candidate"],[attr("english","good"),attr("economy","8"), 
                                            attr("age","29"),attr("maried","yes")]). 
 

3.1. Implementation remarks 

The application that was developed uses Turbo Prolog Language and realises a 
system based on frames for the determination of  the results at a competition.  

A candidate is declared accepted if: 
 1. have 25-30 years; 

    2. english qualificative-at most good.; 
    3. economy note-at most 8. 
 

The system takes the date from the computer and define the fact that  
Satisfying< Good< Very Good.    
 
3.2. Experimental results 

 
domains 
       attr = attr(symbol,symbol) 
       latribute = attr* 
       lparinti = symbol* 
database 
       frame(symbol,lparinti,latribute) 
 
predicates 
       giveVarstaAccept(symbol,latribute) 
       varsta(latribute) 
       economie(latribute) 
       giveEconomieAccept(integer) 
       giveEnglishAccept(symbol) 
       english(latribute) 
       scriuRezAdmis(latribute) 
       concatattr(latribute,latribute,latribute) 
       apartine(symbol,lparinti) 
       apartineattr(attr,latribute) 
       findneamu(lparinti,lparinti,lparinti) 
       findallattr(lparinti,latribute,latribute) 
       scotdubluriattr(latribute,latribute,latribute) 
       meniu 
       citimOptiune 
       execut(symbol)   
       scrieFrame(lparinti,integer,integer) 
       calcCoord(integer,integer,integer,integer) 
       verifAdmis(symbol) 
       calificativ(symbol,integer) 
clauses 
       apartine(X,[X|_]). 
       apartine(X,[_|L]):-apartine(X,L). 
    
       apartineattr(X,[X|_]). 
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       apartineattr(X,[_|L]):-apartineattr(X,L). 
 
       concatattr([],L,L). 
       concatattr([X|L1],L2,[X|Lrez]):-concatattr(L1,L2,Lrez). 
        
       findneamu([],L,L). 
       findneamu([Y|L],Ini,Fin):-frame(Y,LP,_), 
                     findneamu(LP,[Y|Ini],Fin2), 
                     findneamu(L,Fin2,Fin).           
       scotdubluriattr([],L,L). 
       scotdubluriattr([attr(X,Y)|L1],LTemp,LRez):- 
                    not(apartineattr(attr(X,_),L1)), 
                    scotdubluriattr(L1,[attr(X,Y)|Ltemp],LRez); 
                    scotdubluriattr(L1,LTemp,LRez). 
       findallattr([],L,L). 
       findallattr([X|LP],Lini,Lrez):- 
               frame(X,_,La), 
               concatattr(Lini,La,Lini2), 
               findallattr(LP,Lini2,Lrez). 
       calificativ("satisfying",1). 
       calificativ("good",2). 
       calificativ("very good",3). 
       meniu:-shiftwindow(1), 
              cursor(0,1), 
              write("1 - Consulting of file BDC"), 
       cursor(1,1), 
              write("2 - List of all frames"), 
              cursor(2,1),              
              write("3 - Verifing the acceptance of the candidate"), 
              cursor(3,1), 
              write("4 - Exit program"). 
       citimOptiune:- 
              shiftwindow(3), 
              write(" Option: "), 
              readln(X), 
              execut(X). 
       execut("1"):- 
                  shiftwindow(2), 
                  clearwindow, 
                  consult("comp.bdc"), 
                  write("Knowledge base was consulted with succes!"), 
                  citimOptiune. 
                   
       execut("2"):-shiftwindow(2),clearwindow, 
                    findall(F,frame(F,_,_),L), 
                    L=[], 
                    write("No frames!"),nl, 
                    citimOptiune; 
                    shiftwindow(2), 
                    clearwindow, 
                    write("Names of frames :"),nl, 
                    findall(F,frame(F,_,_),L), 
                    scrieFrame(L,1,6), 
                    citimOptiune. 
                     
       execut("3"):-shiftwindow(2),clearwindow, 
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                    write("Get the name of the candidate: "), 
                    readln(Nc), 
                    verifAdmis(Nc), 
                    citimOptiune. 
        
       execut("4"). 
       execut(_):-shiftwindow(2), 
                  clearwindow, 
                  write("Inexistent command!"),nl, 
                  write("Please be careful!"), 
                  citimOptiune.                            
        
       calcCoord(X,Y,X1,Y1):-X1=X, Y1=Y+20,Y1<80; 
                             Y1 = 6,X1 = X+1. 
                  
       scrieFrame([],_,_):-nl,nl,write("The frames are listed!").           
       scrieFrame([F|L],X,Y):-cursor(X,Y), 
                              write(F),  
                              calcCoord(X,Y,X1,Y1), 
                              scrieFrame(L,X1,Y1). 
        
       verifAdmis(Nc):-not(frame(Nc,_,_)), 
                       write("The candidate does not exist!"). 
       verifAdmis(Nc):-frame(Nc,LP,LA), 
                       findneamu(LP,[],NewL), 
                       findallattr(NewL,[],NewLA), 
                       concatattr(NewLA,LA,NewLa2), 
                       scotdubluriattr(NewLa2,[],L), 
                       scriuRezAdmis(L). 
                                         
       english(L):-apartineattr(attr("english",Calificativ),L), 
                   giveEnglishAccept(Calificativ). 
       english(L):-not(apartineattr(attr("english",_),L)), 
                   write("The candidate not accepted!"),nl, 
                   write("Because don't have the note at english!"). 
       giveEnglishAccept(Calificativ):- 
                   calificativ(Calificativ,X),X<2, 
                   write("The candidate not accepted!"),nl, 
                   write("Because the note at english is too smal!").             
       varsta(L):-apartineattr(attr("age",X),L), 
                  giveVarstaAccept(X,L).                 
       varsta(L):-not(apartineattr(attr("age",_),L)),             
                  write("The candidate not accepted!"),nl, 
                  write("Because the age is unknown!"). 
       giveVarstaAccept(X,_):-str_int(X,Y),Y<31,Y>24, 
                            write("The candidate was accepted!."). 
       giveVarstaAccept(X,_):-str_int(X,Y),Y<25, 
                            write("The candidate not accepted!"),nl, 
                            write("Because the age is not in an admisible limit!").  
       giveVarstaAccept(X,_):-str_int(X,Y),Y>30, 
                            write("The candidate not accepted!"),nl, 
                            write("Because the age is not in an admisible limit!").  
       giveVarstaAccept(_,L):- 
                            apartineattr(attr("birthYear",X),L), 
                            str_int(X,YN), 
                            date(Y,_,_), 
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                            Varsta = Y-YN, 
                            str_int(StrVarsta,Varsta), 
                            giveVarstaAccept(StrVarsta,L). 
       giveVarstaAccept(_,_):- 
                            write("The candidate not accepted!"), 
                            nl,write("Because the age cannot be calculated!").                      
                                               
       economie(L):-apartineattr(attr("economy",Nota),L), 
                    str_int(Nota,NotaInt), 
                    giveEconomieAccept(NotaInt). 
       economie(L):-not(apartineattr(attr("economy",_),L)), 
                    write("The candidate not accepted!"),nl, 
                    write("Because the note at economy not exist!"). 
       giveEconomieAccept(Nota):- 
                          Nota<8, 
                          write("The candidate not accepted!"),nl, 
                          write("Because the note at economy is too smal!").                           
       scriuRezAdmis(L):- 
                        english(L); 
                        economie(L); 
                        varsta(L). 
                                  
goal  
       makewindow(1,15,3,"<< OPTIONS >>",0,0,7,80), 
       makewindow(2,15,3,"<< ANSWERS >>",7,0,18,80), 
       makewindow(3,15,0,"",5,1,1,76), 
       meniu, 
       citimOptiune, 
       removewindow, 
       removewindow, 
       removewindow,  
       retractall(frame(_,_,_)). 
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Looking at the structure of the implicated frames and at the rules of acceptance, the 
obtained results proved to be correct. 
 

4. Conclusions 
    

Minsky’s frames proved to be a very appropriate way to encode information and 
fast and accurate means of deciding acceptance of proposed candidates to a competition. 
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A method to compute the last non zero digit of n!
  
 
Abstract. The study of  determining the last non zero digit of n! has been of wide interest to 
mathematicians and computer scientists over the time. Multiple methods have been developed. Present 
paper proposes yet another technique built to provide an algorithm of a very good complexity. 

 
1. Introduction 
 

A simple method for the problem would be to effectively calculate n!, and then 
find the last non zero digit. The inconvenients of this method would be complexity of 
O(n) order and also the fact that the number would be very  big and difficult to  retain in 
an elementary type of data, needing the implementation of a type of data (array of digits) 
which should  retain very big numbers. This entails the increase of the run time  and also 
of the complexity which becomes O( ( )2

10log in ). 

 
2. Proposed method 
 
Proposed method provides a very good complexity. 
It is built upon certain properties of the function that provides the last non zero digit for a 
number and on some particular characteristics of n!. 
 
2.1 Properties of the function to provide the last non zero digit of a 
number 
 

Let f  be the function  to provide the last non zero digit, e.g. f(650) = 5 - the last 
non zero digit of 650. 
Some of its properties are studied below. 
 
Proposition. f(n) represents the remainder of the division of n to 10 if n does not belong 
to (M 5  denotes multiples of  5) 5M
Proof. 

n not being multiple of 5, it results that it is not multiple of 10 either and that the last 
digit of n is a non zero digit. 
 
Proposition. f(f(n)) = f(n); 
Proof. 
     f(n) is a non zero digit, therefore f applied to a digit is the digit itself. Therefore if x = 
f(n) than f(f(n)) = f(x) = x;  
Example: 

f(f(302)) = f(2) = 2 = f(302); 
  
Proposition. f(a*b) = (f(a)*f(b)) mod 10 if a and b do not belong to  (by n mod v it is 
understood the remainder of the division of n to v). Since a,b 

5M

5M∉ it results that f(a*b) is 
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indeed the last  digit of number n which is obtained by the product between the last  digit 
of numbers a and b.   
 
2.2 Properties of n! 

n! is the product of all the numbers from 1 to n or . ∏
=

=
n

i

in
1

!

If n  this product can be rewritten as a product of products of 5 successive numbers 
n!=( 1*2*3*4*5)*( 6*7*8*9*10)*..*((n-4)*(n-3)*(n-2)*(n-1)*n) 

5M∈

or  ∏∏
= =

+−=
5/

1

5

1

)5*5(!
n

i j

jin

Example: 
 

50!=(1*2*3*4*5)*(6*7*8*9*10)*..*(46*47*48*49*50) 
 
If n ,  n! = m!*(m+1)*..*(n) where m, the biggest multiple of 5 smaller or 

equal to n, is rewritten afterwards.   
5M∉

 
Thus it results that n!=((1*2*3*4*5)*..*( (m-4)*(m-3)*(m-2)*(m-1)*m))* 

(m+1)*..*(n)  
 
 This product can also be written as 

∏∏∏
+== =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

n

nk

n

i j

kjin
15*]5/[

]5/[

1

5

1

*)5*5(! or as a  product of all the elements of this array. 

 
  
 

 Li 

i = 1 1*2*3*4*5 

i = 2 6*7*8*9*10 
  

i = [n/5] ([n/5]*5-4)*( [n/5]*5-3) *([n/5]*5-2 )*( [n/5]*5-1)*([n/5]*5) 

i = [n/5]+1 ([n/5]*5+1) *([n/5]*5+2)*..*(n) 

  
where  for  i < [n/5] is iL

iiiiiL
iiiiiLi

i *5*)1*5(*)2*5(*)3*5(*)4*5(
)*5(*)1*5(*)2*5(*)3*5(*)4*5(

−−−−=
⇒−−−−=

 

where [x]=is the biggest integer smaller or equal to x. 
R n  = L  in case n  or R n  = 1 otherwise.  1]5/[ +n 5M∉
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C i =L i /i 
 
It results that 
 

1]5/[]5/[21 *]5/[**..*2**1*! += nn LnCCCn   
 
L is replaced by  R . 1]5/[ +n n

  
nn RnCCCn *]5/[*..2*1**..**! ]5/[21=  

 
1*2*..*[n/5] is replaced by [n/5]! 
 

nn RnCCCn ]!*5/[**..**! ]5/[21=  
 
n! depends on  [n/5]! 
 

]5/[]25/[21 ]!*25/[**..**]!5/[ nn RnCCCn =  
…………………………………………… 

]5/[
]5/[

1
]5/[

]5/[]!*5/[*]5/[ nn
nn RnCn =

From proposition 2 it results that: 
 

2)5*4*3*2*1()( == fCf i  for i 2]}5/..[1{ Mn −∈  
2)5*9*8*7*6()( == fCf i  for i 2]}5/..[1{ Mn ∩∈  

 
It then results that . ]5/[

][log ]!*5/[*2! 5
n

n Rnn =
 

By introducing in this relation the formula for [n/5]! and then recurrently [n/5 ] 
,[n/5 3 ] … factorial it results: 

2

 

10mod)(*2)!(

*2!
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1
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][log
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It can be observed that f(2 ) is periodical of period  4  f(2 )= f(2 ) for k>0 
because 2 , f(2 )=f(f(2 )*f(16))=f(f(2 )*6); 

n k 4+k

4216* += kk 16*k k k

{ } )6*)2((8,6,4,2)2( kk fff ⇒∈ = because )2( kf
f(2*6)=2; 
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f(4*6)=4; 
f(6*6)=6; 
f(8*6)=8; 
 

 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫
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⎪
⎪
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f n
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)2(  

 
 
What remains to be calculated is only the  index of the power of 2 and the product of 
R at each step ]5/[ in

Example for n=302 
 

 Li 

i=1 1*2*3*4*5 

i=2 6*7*8*9*10 
  

I=[302/5]=60 296*297*298*299*300 

I=[302/5]+1=61 301*302 

 

5*299*298*297*296
.......................................

5*14*13*12*11
5*9*8*7*6
5*4*3*2*1

/

60

3

2

1

=

=
=
=

⇒=

C

C
C
C

iLC ii

 

 It can be noticed that 

302*301!*60**..***!302
302*301*60*.*.3*2*1**..***!302

302*301*60**...*3**2**1*!302

60321

60321

60321

CCCC
CCCC

CCCC

=
⇒=

⇒=
 

 
The algorithm is applied for n=60 
 

 Li 
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i = 1 1*2*3*4*5 

i=2 6*7*8*9*10 
  

i=[60/5]=12 56*57*58*59*60 

I=[60/5]+1=13  

 

5*59*58*57*65
.................................

5*9*8*7*6
5*4*3*2*1

/

12

2

1

=

=
=

⇒=

C

C
C

iLC ii

 

 It can be noticed that  

!12**..**!60
12*.*.2*1**..**!60

12**...*2**1*!60

1221

1221

1221

CCC
CCC

CCC

=
⇒=

⇒=
 

The algorithm is applied for n=12. 
 

 Li 

i=1 1*2*3*4*5 

i=2 6*7*8*9*10 
I=[12/5]+1=3 11*12 

 
 

5*9*8*7*6
5*4*3*2*1

/

2

1

=
=

⇒=

C
C

iLC ii

 

The algorithm is applied for n=2 
 
n!=2; 
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In conclusion: 
 

;210mod32)!302(
10mod))2*2*1*2(*4()!302(

10mod))302*301*12*11*2(*)2(()!302(

302*301*12*11*2***.***!302

302*301*12*11!*2****..****..***!302
302*301!*12**..****..***!302

302*301!*60**..***!302

21260

6013
2

12
2
3

3
2

3
1

21122160321

122160321

60321

==
⇒=

⇒=

⇒=

⇒=
⇒=

⇒=

++

f
ff

fff

CCCCCC

CCCCCCCCC
CCCCCCC

CCCC

 

 
3.Conclusions  

This method has the complexity O( ), a lot smaller than other methods. 
Proposed method resolves many of the inconvenients of the others not only from the  
memory point of view, not needing the allocation  of a considerable memory area,  but 
also of the type and implicitly of the number of operations.  

n5log

Example: 
 For n=1220703129 only 15 divisions are made and  29 operations of finding the 
remainder. 
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ten encountered. Because almost everyone uses computes, the games industry 

lar domain. I am trying to present in the following a little about how the computer 

 - Introduction 

constitute one of the playing domains. This type of games is very 
 of people spend time and money on it. They are widespread in all the 
orner.  
 card games have been devised over the centuries, but relatively few 
eal. Poker, for instance, is based on several games that no longer 

lassification of card games into five broad categories was made: 
 group includes the trick-winning games, in which certain cards or an 
it are designated trumps (highest ranking cards). Among these are the 
orms of whist, bridge, and euchre. 
 group comprises games in which the object is to own or win certain 

 counting cards and sometimes to show specific scoring combinations 
s melds. Among such games are pinochle, bezique, and piquet. The 
p game of casino and the game of hearts, in which the aim is to avoid 
re of counting cards, can also be included in this category. 
ct of another group of games is to obtain a given score by matching, 
ng, or discarding cards. Of these, the rummy games are the most 
layed. 
ting a fourth category are the showdown games, in which players 
at they can show cards, or combinations of cards, outranking those of 
onents. Poker is the best known of the showdown games. 
roup, based on adding or matching numbers, includes such betting 
 black jack (also known as twenty-one), baccarat, chemin de fer, and 
.  
ormation see [4]. 

e particularities 

 is a category of card games. There are many types of rummy. This 
oard game and the payer’s cards are little plastic boxes with numbers 
me doesn’t implement all the rules of the real game, but the base is 
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 A player is declared winner if all its cards represent valid formation of minim 3 
cards. There are two types of formation: 

• Same color, consecutive numbers 
• Different colors, same numbers. 
There are 106 cards: eight formations of 1 to 13 numbers of four colors – two 

colors for each, and 2 jokers. The cards are randomized in 7 cards columns, resulting 15 
columns and one card. The number of that card represents the first playable column. 
Starting with column, each player receives two columns, resulting 14 cards for each of 
them. The first player receives one card more. 

If a player has 15 cards, he must drop one off its board and if he has 14 and it is 
his turn, he must take the next card from the cards columns. 

The joker can be used in place of any card. 
 
 
 

 

Formation of same numbers 
with different colors 

Formation that use joker 
 
 
 
 
 

Formation of consecutive 
numbers with same color. 

 
 
 
 
 

The consecutive formations are calculated modulo 13. It means that the formation 
(12, 13, 1) is valid. In the same number formations there can’t be use cards with same 
color. 

 
 
How does the computer think? 

 
The Rummy Game implements an algorithm for computing the pieces list 

according to the rules of the game. At this level, the algorithm is very simple. The 
priority is represented by the consecutive numbers formations. This algorithm is 
presented below: 

 
• The pieces are sorted by colors and by numbers. 
• The consecutive formations are isolated from the others pieces. 
• With the remaining pieces it is tried to build the other type of formation (same 

number, different colors). 
• The joker will be appended only at the 2-pieces formation of any of the two 

types (this is a disadvantage because if the player has all formations built and 
one joker, he can’t append the joker to a formation). 

• The dropped piece will be the last one. Here, again it is a discomfort. The 
remaining pieces are ordered by colors.  
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Why 3-D? 
 
Today, most of the games are made in 3-D. A 3-D game is more real than a 2-D 

game. In this rummy game you will note that particularity. Having control of the camera 
makes you believe that you are really playing rummy with some friends. The hand is very 
important, too. You don’t have only a rectangle to select a piece, but that piece ‘is in your 
hand’. 

  
Now let’s see how a 3-D game is build. The important thing is to know something 

about Physics and Three Dimensional Geometry.  
 
Physics helps create games to appear more real. The physical principles are based 

on true demonstrations and they represent the mathematical interpretation of the things 
that happen around us. If a leaf falls from a tree, it will never go up. Till then it will hit 
the ground. To this mechanism the gravitational force, the weight of the leaf, the wind, 
they all contribute. If you push a ball on the ground there are some particular issues that 
characterize the ball’s movement. Here the chafe force intercedes that slows down the 
ball’s speed. Physics demonstrate mathematical formulas for the speed, acceleration, and 
the direction that the ball will follow. These formulas are used in games and in this way, 
the player is really enjoying seeing that the real things can be simulated in a virtual 
world. Here it is more than calculating formulas and drawing a world. The virtual world, 
and in particular the games try to create what we perceive as being natural. But, can it be 
created as it is? 

In the Rummy Game Physics isn’t used, so our discussion won’t continue in this 
domain. For more information see [3]. 

 
The next important thing is how to represent the computations made by Physics. 

Geometry defines a set of formulas used to manipulate objects in a predefined space. The 
games use 3-D axe who define our work space (scene). There are two types of Cartesian 
Coordinates: 

• Left-handed Cartesian Coordinates. 
• Right-handed Cartesian Coordinates. 

 

 
The type of Cartesian coordinates used determines the order in which the vertices 

of the object will appear in the object. If in left-handed Cartesian coordinates a triangle 
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has its vertices v0, v1, v2, in right-handed Cartesian coordinates it must has the vertices 
v0, v2, v1. 

 
A 3-D primitive is defined as a collection of vertices that forms a single 3-D 

entity. 
Complex primitives are polygons. The simplest polygon is the triangle. 3-D 

objects, generally, are formed only from triangles, because is very simple to create them. 
In conclusion, a 3-D object is a collection of vertices, linked between them and the result 
is a closed surface. Its components are: vertices, edges and faces. 

This box is a 3-D object. It has 8 vertices, 18 edges and 12 faces. The faces are 
triangles. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 Smooth box     Wire box 
 
For more information see [1] and [2]. 
From this point of view, a game can be defined as a lot of 3-D objects that are 

moving in the scene. Every game has its own rules that will be obeyed by these objects. 
An object can be a human body, a car, etc. For example, in the rummy game, the objects 
are: the table and the chairs, the user’s board on which the pieces are placed, the hand and 
the pieces. The only moveable objects are the pieces. Their coordinates are changing 
using the 3-D transformation. 

It is important to notice that, at the beginning of the game, all the objects have 
their coordinates around the scene’s origin (0, 0, 0). In this way, the transformations can 
be easily applied to the object. And anyway, any object must be built with its local 
coordinates. When the object is inserted into the scene the reference to the object is made 
through its local coordinates. 

 

3-D Transformations 

In applications which work with 3-D graphics the most commonly used are 
transformations. You can use geometrical transformations to do the following: 

• Change objects position. 

• Resize objects dimension. 

• Rotate objects around one given point. 
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• Change viewing positions, directions, and perspectives. 

A point can be transformed into another point by using a 4×4 matrix. In the 
following example, a matrix reinterprets the point (x, y, z), producing the new point (x', 
y', z'). 

 

 

 

 
Transformations are of three types: 
• Translation. 

The vector’s components (Tx, Ty, Tz) are added to the point’s components 
(x, y, z) and the result is the point (x', y', z').  

 
• Scaling. 

The vector’s components (Sx, Sy, Sz) are multiplied to the point’s 
components (x, y, z). 

 
• Rotation. 

There are three types of rotations, each one of them on one axis, and the 
result is the rotated point around the axis with the angle θ: 

o Around the x-axis: 

 
o Around the y-axis: 

 
o Around the z-axis: 
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These are the things needed to move objects in a 3-D space. 
 
In the rummy game there are used only translation and rotation. A little example 

will explain more about this. To put a piece to the 2nd user’s board there must be 
performed the next computations for the piece’s coordinates: 

 
RX (PI + 0.1) * T (0 + x, 102 + y, -51 + z) * RY (PI / 2). 
 
For the translation vector, x, y and z values are computed with help from the 

index of the piece’s position on the user’s board and (0, 102, -51) is the position of the 
user’s board. For the 3rd and 4th user, the RY’s angle must be PI and 3 * PI / 2. 

 
 
Conclusions & Future Work 

 
• There must be made several improvements in using the joker. At this level, 

the joker can be inserted only at the end of the formation, not inside it.  
• For the dropped piece, there is no sorting algorithm to determine the distance 

between a piece and a corresponding formation. One of my goals concerning 
improvement of the application is to build an algorithm in this scope. For any 
of the remaining pieces, the distance between it and any of the corresponding 
formation will be computed. Afterwards, the pieces will be sorted using this 
flag. The longest distanced piece will be dropped. 

• When a player closes his board, there must be made the computation of the 
pieces for all the players. But this in a career game version. 

• Other important improvement that can be made is to compute all the 
possibilities to have formations and to choose the optimal one. 
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An application to Knowledge Representation and

Processing Systems 
 
 

 
1. Abstract 

This paper refers to the category of Knowledge Representation and Processing System. A system of 
this type represents a method to store, manipulate and consult information. An application to illustrate such 
a system is presented. 

 
2. Introduction 

A Knowledge Representation and Processing System (KRPS) is a compact 
collection of components, well linked one to another, a collection which makes the 
system “think”. The system is able to give an answer to a question, and for that it uses a 
knowledge base and a specific knowledge representation method. The knowledge base 
used by the KRPS is a collection of entities having a syntactical structure in concordance 
to the knowledge representation method, which gives the opportunity, after a process of 
reasoning, to get information about the objects represent in the base. The roles of systems 
of this kind are: firstly to give answers about the objects represented in the knowledge 
base and the secondly to update the knowledge base([3]).  

 
3. Theoretical fundamental concepts of a KRPS 

Let V be an alphabet, V ≠ ø and V+ the smallest set with the next properties: 

•  
+⊆VV

•    if   and  then . 
+∈Vw1

+∈Vw2
+∈Vww 21

The elements of  V+ are called “words” over the alphabet V. 
For each element  there is a  and there are  so that 

. The  number is called the length of the  word. If  and 
 then the word  is obtained by the concatenation of  and . Any subset 

of  is called a language over V . In the theory of knowledge bases the case when  is 
qual with 0 is not considered, although in the general language theory the null word is 
sed. 

+∈Vw 1≥k kaaa ,...,, 21 V∈

kaaaw ...21= k w 1w +∈V
+∈Vw2 21ww 1w 2w

+V k

 
 
A Knowledge Representation Processing System is a set of components which 

ean in their entirety: 
• the syntactical structure of the entities; 
• the functions that the system realizes; 
• the way of reasoning. 
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Let V  be an alphabet and let  be a subset of  ([1]). eprRL +V
 
 

Definition 1.1 
A knowledge base K  over V  is a finite subset of  .           eprRL
In consequence, to define a knowledge base it is necessary to specify: 

• the representation language , the V  alphabet and the constructions 

rules for the elements of . 
eprRL

eprRL

• the rules for the K ⊆ eprRL  base elements selection ([1]). 

There is a knowledge base  and a restrictions set, ⊆K eprRL R , over its elements. If 
all K ’s elements satisfy the restrictions then the base is called an admissible knowledge 
base. The restrictions set, R , is the same for all bases attached to the KRPS. Let  be 
the set of all admissible knowledge bases with respect to the set 

KBL
R . 

Let K KBL∈  be an admissible knowledge base. A K  interrogation is the process 
where-through we ask a question to the KRPS. A question is an element of  - the 
query language. The answer to the question is an element of  - the answering 
language. Let  be a question addressed to the relative system over an admissible 
knowledge base, then  is the answer given by the system. So, the answer 
function is . The answer to an interrogation is obtained after a 
deduction. The deduction is a binary relation, it is characteristic to each system and it is 
symbolized by  . The deduction is the same for any admissible knowledge 
base of the system. The deduction and the answer function are well linked. If 

QL

AnsL

QLw∈

),( wKAns

AnsQKB LLLAns →×:

QKB LL ×⊆
K

w then contains all the  interrogation solutions. ),( wKAns w
Let  be an introduction language. Its elements are used to update a knowledge 

base. The update process is defined by the function 
IL

KBIKB LLLUpd →×: , which is 
called the update function. The update function is applied to an admissible knowledge 
base (its function is to modify or create new elements for the knowledge base) and 
another admissible knowledge base is obtained in the process. 

 
Definition 1.2 

A system  is called a Knowledge 
Representation and Processing System. 

,,,,( IAnsQKB LLLLS = ),UpdAns,

The component of S have the following significance. 
•  represents the all admissible knowledge bases set. An admissible 

knowledge base satisfies the restrictions set, 
KBL

R . 
•  represents the  query language. QL
•  represents the answering language. AnsL
•  represents the introduction language. IL
•  represents the deduction relation realized by S. 
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•  represent the answer function. AnsQKB LLLAns →×:
•  represents the update function ([1]). KBKB LLUpd ×:

Concerning the deduction relation of a KRPS, a lot of properties have been studied 
over the time. 

Let S be a KRPS, , and for a given knowledge 
base  let . 

,,,,( IAnsQKB LLLLS = ),, UpdAns

KBLK ∈ KLwKC Q |{)( ∈= }w
The reasoning defined by the deduction relation α  of the system is: 

• reflexive, if ; )(KCK ⊆
• idempotent, if ))(()( KCCKC = ; 
• monotone, if  ([1]) )()( 2121 KCKCKK ⊆⇒⊆

From all of these properties, the monotone property is the most important. A 
reasoning is monotone if all things that are deduced from any admissible knowledge base, 
are still deduced from any other admissible knowledge base that includes the first one.   

 
 

4. Representing and Processing data using KRPS. 
The , ,  and  sets are introduced.  FS CS PS VS

•  is a set of symbols of functions. To each symbol of this type, a 
natural number called the arity of the respective symbol is attached. If a 
symbol  is a symbol with the arity equal to n, the symbol will be 
represented by . 

FS

FSf ∈
)(nf

•  is a set of symbols called constants. CS
•  is a set of symbols of predicates. To each symbol of this type, as in 

the case of symbols of functions, a natural number called the arity of the 
respective symbol is attached. 

PS

The triplet  is called a base. ( PCF SSSB ,,= )
Let  be a set of symbols of variables. A term is a constant, a variable or of the 

form  where  and  are terms over the base 
VS

),...,( 1 kttf F
k Sf ∈)(

ktt ,...,1 B . 
An atom over the base B  is an element that has the following form:  

where  and  are terms over the base 
),...,( 1 nttp

P
n Sp ∈)(

ntt ,...,1 B ([1]). 
A formula is an atom, the negation of a formula, the disjunction of two formulas, 

the conjunction of two formulas. The negation of the  formula is symbolized by F F− . 
The disjunction of the and  formulas is symbolized by . The conjunction of 
the and  formulas is symbolized by

F G GF ∨
F G GF ∧ . 

 
Example 1 

Let { }{ } { }( ))2()1()1( ,,, qpafB =  be a base. Let  be the collection of all sets over 
the base 

KBL
B  that do not contain variables. Let  be the set of all formulas over the base QL

B using as variable the set . For each }{xSV = KBLK ∈  the deduction relation is defined 
as: 

 41



• If X  is an atom es not contain variables then:  that do
o (D1)  K X  if KX ∈ . 
o (D2)  K X  if  KX ∉ . 

• If e ulas that do not contain variables over the base F and G ar form B  then: 
o (D3) K G  if KF ∈ or KG∈ . ∨  F
o (D4) K )( GF ∨−  if KF ∈− and KG∈− . 

K GF F Ko (D5) ∧  if ∈ and KG∈ . 
K )( GF ∧− KF KG∈o (D6)  if ∈− or . −
K F−−  if KFo (D7) ∈ . 

• If m hat do tain r es enF is a for con iabl Kes  va th  ula t F  if there is a 
su ubstit tion σ  so K σ

y
F . 

Let { ut  
Let be defined by the relation: 

o If is a fo t do

Sub
s noesL 2}, ∪= , where Sub  is the set of all substit

AnsQKB LLLs →×:
ions.An

An
w  rmula tha es not contain variables then: 

     
o If  is a formula that does contain variables then: w

KSubwKAns |{),( ∈= σ     }σw . 
Let  be the set of atoms over the base B  that does not contain variables. The 

LL →×:  is defined by t  relation (Upd
IL

update function L wKwK ∪= , 
where “ ” is the reunion operation defined in the theory of sets. 

S
ation and the way tha

(),,(),({ aafqpaaqapK =

KBIKBUpd he }{),
∪

Let ,,,,( KB LLLL= ),UpdAns  be a KRPS. Defining the components of a 
KRPS means to create the general setting of knowledge represent t 
these can be processed.  

IAnsQ

Let )} be a knowledge base for the system S . ),(()),(af
K  is an admissible base because it contains only atoms without variables.  

The function Ans  can be evaluated. 
o afaqapKAns .o)))(,()(,( n=∧  

The answer is “no” because K )(ap  but K )).(a  
trating this is D5. 

,( faq
The rule used to demons

yesafafqafpKAns =∨ )))(),(())((,( .o  
a KThe answer is “yes” bec use )(p a . The rule used to 

 
The update 

demonstrating this is D1. 

of the K  knowledge base with (p s realized by the Upd  
st be applied to the knowle

)))(( aff  i
function which mu dge base K . 

 1)))}((({))))(((,( KaffpKaffpKUpd =∪= .  
( ffpaa

                 
                   )))}((()),((),,(),{1 aafqafpaaqpK =  ([2]). 
    

((),),
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A KRPS to play the role of a Data Base Management System 
5.1 Description of the Model 

ucts in a 
sh

 
5. 

The following definitions describe the KRPS to store data about the prod
op. 

),,,,(Re piecespricecantitynamecodeL pr = . 
},,,),,,,(,),,,,(|{ 2121212122221111 uuttzzyyKutzyxKutzyxKLKB ====⇒∈∈=

},,,|),{( t        otalvaluelistpieceslistpricelistallqqxLQ ∈= . 

AnsQKB LLLAns →×:  

 
}}{{ noStrRNLAns ∪∪∪=  

}},,{|)),,,,,{(( delchaddopoputzyxLI ∈=  

KBIKB LLLUpd →×:  

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

+∪=⇒
⇒∈∃=

=⇒∈∃=
∪=⇒∈∃=

+∪=⇒=∈∃
∪=⇒∉∃

∪=⇒≠∈∃
=

=

)}.,,20000,,{()}),,,,{(\(                            
),,,,(    

3
2
1

11

1111111

LtzyxLtzyxKK
KLtzyxandchLop

t,u)}    K\{(x,y,z,KK)(x,y,z,t,u   del and  op 
u)}{(x,y,z,t,,u)}) ,t(K\{(x,y,zKK,u)(x,y,z,t   ch  and  op 

)}  uu{(x,y,z,p,)}),p,u,z(K\{(x,yKp,K, t),p,u,z(x,y)        
u)}{(x,y,z,t,KKK)  (x,_,_,_,_)        

,u)}{(x,y,,z,tKK pK,t)(x,_,_,p,_)         
dadd     anop

),z,t,u),opUpd(K,(x,y

αα
α

This reasoning is monotone, reflexive and idempotent([2]). 
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5.2 Experimental results 
 

ped using Visual C++. It needs an additional file to 
store data. The data are represented in the following table. 

 

This application was develo

 

 
 
First picture shows the system answer at the question   )),3(,( listpriceKAns . 
 

 
 
Next picture  shows the system answer at the question . )),5(,( listpiecesKAns
 

 
 
The following pictures show the new K  base after applying the update 

Upd , )_),_,_,_,,1(,( delK
 

  
 
nd the update  which increases by 20.000 the price of 

all products which are liquids. 
a  )),_,_,_,(_,,( chLwLKUpd
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6. Conclusions 
KRPS systems are very appropriate to play the role of a Data Base Management 

System. Moreover, they can encode additional information about the entities, information 
that cannot be represented by the means of a DBMS but necessary to encode more 
realistic characteristics of the entities. 
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Convex Hulls in Three Dimension
 
RACT 

onvex hull of a set is the smallest convex set containing this set. The focus of this article is to 

an algorithm  for constructing the convex hull of a set of  three dimensions points. In this 

 the following concepts are presented: properties of polyhedra, proof and consequence of 

s formula. The results are applied to the study of convex hull using an incremental 

thm.   

 

Introduction 

bset P of the plane is convex if for every p, q ∈ P the line segment pq is 

ontained in P. The convex hull of a set P, denoted CH(P), is the smallest 

ontaining P. 

ogy: if the points are nails on a board, a rubber band (convex hull) encloses 

ls on the board. 

efinition: CH(P) is the unique convex polygon whose vertices are points of 

ns all points in P.[2] 

lyhedron is the natural generalization of a two-dimensional polygon to three-

it is a region of the space whose boundary is composed of a finite number of 

al faces, every two of which are either disjoint or meet at edges and vertices. 

tion is vague, and it is a surprisingly delicate task to mate it capture just the 

bjects. Since the primary concern of this description is convex polyhedra, 

mpler than general ones, a precise definition of them could be avoided. But 

fficulties helps develop three-dimensional geometric intuition, an invaluable 

rstanding computational geometry. 

boundary or surface of a polyhedron is composed of three types of geometric 

-dimensional vertices (points), one-dimensional edges (segments), and two-

 faces (polygons). It is a useful simplification to the demand that the faces are 

gons. This is no loss of generality since any nonconvex face is coplanar. 
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What constitutes a valid polyhedral surface can be specified by conditions on how the 

components relate to one another. We impose three types of conditions: the components 

intersect “properly”, the local topology is “proper”, and the global topology is “proper”.  

 

2. Fundamental theoretical concepts of a polyhedra 

 

1. Components intersect “properly”. 

For each pair of faces, we require that either 

(a) they are disjoint, or 

(b) they have a single vertex in common, or 

(c) they have two vertices and the edge joining them in common. 

This is where the assumption that faces are convex simplifies the conditions. 

Improper intersections include not only penetrating faces, but also faces touching in the 

“wrong” way (see Figure 1). There is no need to specify conditions on the intersection of 

edges and vertices, as the conditions on faces cover them also. Thus an improper 

intersection of a pair of edges implies an improper intersection of faces. [1] 

Figure 1 

 

2. Local topology is “proper”. 

The local topology is what the surface looks like in the vicinity of a point. 

This notion has been made precise via the notation of  “neighborhoods”, i.d. 

arbitrarily small portions (open regions) of the surface surrounding a point. We seek to 
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exclude the three objects shown in Figure 2. In all three examples in that figure, there are 

points that have neighborhoods that are not topologically two-dimensional disks. The 

technical way to capture the constraint is to require the neighborhoods of every point on 

the surface to be “homeomorphic” to a disk. A homeomorphism between two regions 

permits stretching and bending, but no tearing. A fly on the surface would find the 

neighborhood of every point to be topologically like a disk. A surface for which this is 

true for every point is called 2-monifold, a class more general than the boundaries of 

polyhedra. 

We have expressed the condition geometrically, but it is useful to view it 

combinatorially also. Suppose we triangulate the polygonal faces. Then every vertex is 

the apex of a number of triangles. Define the link of a vertex v to be a collection of edges 

opposite to v in all the triangles incident to v. For a legal triangulated polyhedron, we 

require that the link of every vertex is a simple, closed polygonal path. The link for the 

cycled vertex  in Figure 2 (b), for example, is not such a path. One consequence of this 

condition is that every edge is shared by exactly two faces. [4] 

3. Global topology is “proper”. 

The surface is intended to be connected, closed, and bounded. Thus, it is required 

that the surface is connected in the sense that from any point one may walk to any other 

on the surface. This can be stated combinatorially by requiring  that the 1-skeleton, the 

graph of edges and vertices are connected. Note that this excludes, for instance, a cube 

with a “floating” internal cubical cavity. Together with stipulating a finite number of 

faces, our previous conditions already imply closeness and boundness of these faces, 

although this is perhaps not self-evident. 

One might be inclined to rule out “holes” in the definition of the polyhedron, 

holes in the sense of “channels” from one side of the surface to the other that do not 

disconnect the exterior (unlike cavities). The usual terminology is adopted and permit 

polyhedra are permitted to have an arbitrary number of such holes. The number of holes 

is called the genus of  the surface. Normally only polyhedra with genus zero: will bet 

considered i.d. hose topologically equivalent to the surface et a sphere.[3] 
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Figure 2 

 

In summary, the boundary of a polyhedron is a finite collection of planar, 

bounded convex polygonal faces such that. 

1. the faces intersect properly; 

2. the neighborhood of every point is topologically an open disk, or 

(equivalently) the link of every vertex is a simple polygonal chain; and 

3. the surface is connected, or (equivalently) the 1-skeleton is connected. 

The boundary is closed and encloses a bounded region of space. Every edge is shared by 

exactly two faces; these faces are called adjacent. 

 Convex polyhedra are called polytopes, or sometimes 3-polytopes to emphasize 

their three-dimensionality. A polytope is a polyhedron that is convex on that the segment 

connecting any two of its points inside. Convex polygons can be characterized by the 

local requirement that each vertex be convex, polytopes can be specified locally by 

requiring that all dihedral angles be convex( π≤ ). Dihedral angles are the internal angles 

in space at an edge between the planes containing its two incident faces. For any 

polytope, the sum of the face angles around each vertex is at most π2 , but this condition 

does not alone imply convexity. 
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3. Euler’s Formula 

 

In 1758 Leonard Euler noticed a remarkable regularity in the numbers of 

vertices, edges, and faces of a polyhedron of genus zero: the number of vertices and faces 

together is always by two more than the number of edges; and this is true for all 

polyhedra. So a cube has 8 vertices and 6 faces, and 8+6=14 is two more than its 12 

edges. And the remaining regular polytopes can be seen to satisfy the same relationship. 

If we let V, E and F be the number of vertices, edges and faces respectively of a 

polyhedron, then, what is now known as Euler’s formula is: V-E+F=2. [1] 

Proof of Euler’s Formula is comprised of three parts: 

1. Converting the polyhedron surface to a plane graph. 

2. The theorem for trees. 

3. Proof by induction. 

Firstly, the polyhedron is “flattened” on surface P to be a plane, perhaps with 

considerable distortion by the following procedure. Imagine the surface is made of a 

pliable material. Choose an arbitrary face f of P and remove it, leaving a hole in the 

surface. Now stretch the hole wider and wider until it becomes much larger than the 

original size of P. It should be intuitively plausible that one can then flatten the surface 

onto the plane, resulting in a plane graph G (the 1-skeleton of the polytope): a graph 

embedded in the plane without edge crossings, whose nodes derive from vertices of P, 

and whose arcs derive from edges of P. The edges of f become the outer boundary of G. 

Each face of P except for f becomes a bounded face of G; f becomes the exterior, 

unbounded face of G.  

 
Figure 3 The 1-skeleton of a cube, obtained by flattening to a plane 
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Figure 3 illustrates the graph that results from flattening a cube. Thus if we count 

this exterior face of G as a true face (which is the usual convention), then the vertices, 

edges, and faces of P are in one-to-one correspondence with those of G. This permits us 

to concentrate on proving Euler’s formula for plane graphs. 

The second step is to prove the formula in the highly restricted case where G is a 

tree. Of course a tree could never result from stretching a polyhedron, but this is a useful 

tool for the final step of the proof. So suppose G is a tree of V vertices and E edges. It is a 

property of trees that V=E+1, a fact that is assumed for the proof. A tree bounds or 

delimits only one face, the exterior face, so F=1. Now Euler’s formula is immediate: V-

E+F=(E+1)-E+1=2. 

The third and final step of the proof is by induction on the number of edges. 

Suppose Euler’s formula is true for all connected graphs with no more than E-1 edges, 

and let G be a graph of V, E, and F vertices, edges, and faces respectively. So suppose G 

has a cycle, and let e be an edge of G in some cycle. The graph G'=G\e is connected, with 

V vertices, E-1 edges, and (here is the crux) F-1 faces: removal of e must join two faces 

into one. By the introduction hypothesis, V-(E-1)+(F-1)=2=V-E+F. [1] 

 

Consequence: Linearity 

Euler’s formula implies that the number of vertices, edges, and faces of a 

polytope are linearly related: if V=n, then E=O(n) and F=O(n). This will permit to use 

“n” rather loosely in complexity analyses involving polyedra. 

Because we seek to establish an upper bound on E and F as a function of V=n, it 

is safe to triangulate every face of the polytope, for this will only increase E and F 

without affecting V. So for the remainder of this argument let it be assumed that all the 

faces of the polytope are triangles. If the edges face by face are counted, then 3F is 

obtained because each face has three edges. But since each edge is shared by two faces, 

this double-counts the edges. So 3F=2E. Now substitution into Euler’s formula 

establishes the linear bounds: 

 V-E+F=2 

V-E+2E/3=2 
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    V-2=E/3 

 E=3V-6<3V=3n=O(n) 

 F=2E/3=2V-4<2V=2n=O(n) 

Theorem: For a polyhedron with V=n, E, and F vertices, edges, and faces 

respectively, V-E+F=2, and both E and F are O(n). [3] 

 

4. Incremental algorithm in two-dimensions 

 

Input:  such that no three are collinear; let P be a random 

permutation of the input points. 

2
1 },...,{ RPP n ⊆

Step 0: Randomly extract 3 points from P and do the following: 

a) Form a triangle T. 

b) Pick a point c interior to the triangle T. 

Step 1: Draw an arc from c to each point in P. 

Step 2: Partition the points in P by the edge of T (the triangle) which their arc 

crosses (a point is actually marked as dead if it is in the interior of this polygon; 

otherwise the point is considered alive). 

Step 3: While there is a point above some edge in the current CH do 

a) Pick a random point p above, say, edge e. 

b) Build-Tent (p, e, Poly) 

Output: The convex hull of P. 

 

5. Incremental algorithm in three-dimensions 

 

The overall structure of the three-dimensional incremental algorithm is identical 

to that of the two-dimensional version. At the ith iteration, compute 

conv ( . And again the problem of computing the new hull naturally 

divides into two cases. Let p=  and Q= . Decide if 

←iH )ii pH Υ1−

ip 1−iH Qp∈ . If so, discard p; if not, 

compute the cone tangent to Q whose apex is p, and construct the new hull. 
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The test  can be made in the same fashion as two dimensions: p is inside Q if p is 

to the positive side of every plane determined by a face of Q. The left-of-triangle test is 

based on the volume of the determined tetrahedron, just as the  left-of-segment test is 

based on the area of triangle. If all faces are oriented consistently, the volumes must all 

have the same sign (positive under the conventions considered in this article). This test 

can clearly be accomplished in time proportional to the number of faces of Q that is O(n). 

Qp∈

 When p is outside Q, the problem becomes more difficult, as the hull will be 

altered. Recall that in the two-dimensional incremental algorithm, the alteration required 

finding two tangents from p to Q. In three dimensions, there are tangent planes rather 

than tangent lines. These planes bound a cone of triangle faces, each of whose apex is p, 

and whose base is an edge e of Q. An example is shown in Figures 4 and 5. Figure 4 

shows  and  from one point of view, and Figure 5 shows  the same example from 

a different viewpoint. 

1−iH iH

 

 
 

Figure 4 Viewpoint one: (a)  before adding a point in corner  1−iH

(b)  after: iH  
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Figure 5 Viewpoint two : (a)  before adding a point in corner   1−iH

(b)  after: iH  

          

Imagine staying in point p and looking toward Q. Assuming for the moment than 

no faces are viewed edge-on, the interior of each face of Q is either visible or not visible 

from p. It should be clear that the visible faces are precisely those that are to be discarded 

in moving from Q=  to . Moreover, the edges on the border of the visible region 

are precisely those that become the bases of cone faces apexed at p. Suppose e is an edge 

of Q such that the plane determined by e and p is tangent to Q.  

1−iH iH

 

6. Implementation remarks: 
 

The application is written in C. To memorize the information about faces, edges and 

vertex three structures are used. At the beginning it has two options are given. Example: 

Cube and Random points. If  is the first option chosen is created the convex hull of the 

following points: 

0 0 0 

0 50 0 

50 50 0 

50 0 0 
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0 0 50 

0 50 50 

50 50 50 

50 0 50 

 

 These points represent indeed the coordinates of the vertex of a cube. 

 If the second option is chosen the application asks for a number of points. For 

each point it will generate aleatory the three coordinates (between 0 and 50) and then it 

will pass to form the convex hull for them. 

 The resulted drawing can be seen using different projection formulas and the three 

axes: OX, OY, OZ. 

 

 

7. Experimental results: 
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8. Conclusions and future work  

 

The algorithm presented is one of the most quickly algorithms O(n2). An 

algorithm which is better has O(n logn) and is based on the divide-and-conquer method ( 

Preparata and Hong in 1977). A challenge is to make a convex hull in four dimensions 

where the fourth dimension can be time, or in more dimensions. E.g.: The key sartorial 

characteristic of a person could be represented by height, sleeve length, inseam length, 

neck and waist circumferences. Then each person could be viewed as a point in a five-

dimensional space: height, arm, leg, neck, waist. 
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