

 SUPERVISORS:

 Professor Nicolae Ţăndăreanu, Ph.D.
 Assistant Prof. Ruxandra Gorunescu
 Assistant Prof. Cătălin Stoean

 EDITORIAL BOARD

Mihai Dobrin
RCAI Junior Member
Third Year Student
E-mail: famdobrin@rdslink.ro

Orlando Gabriel Pîrlog
RCAI Junior Member
Third Year Student
E-mail: orlando@k.ro

Andrei-Constantin Sandu
RCAI Junior Member
Third Year Student
E-mail: andreisandu2000@yahoo.com

Gabriel Voinescu
RCAI Junior Member
Third Year Student
E-mail: gabbryel@k.ro

mailto:famdobrin@rdslink.ro
mailto:orlando@k.ro
mailto:andreisandu2000@yahoo.com

Contents

1. A graphical approach to Lindenmayer systems 4

2. Admission decisions for candidates to a competition through
Minsky frames 13

3. A method to compute the last non zero digit of n! 26

4. The Rummy Game 32

5. An application to Knowledge Representation and Processing
Systems 39

6. Convex Hulls in Three Dimensions 47

 3

A graphical approach to Lindenmayer systems

ABSTRACT
This application belongs to the category of Lindenmayer system representation applications. The

Lindenmayer systems are used in the computer game industry to draw certain textures and 3D elements

(flowers, trees, etc.) being useful in the drawings which repeat at a smaller scale elements presented at a

bigger scale of that figure.

1. Introduction

The central concept of a Lindenmayer system is that of rewriting. Rewriting is a

technique for building complex objects by successively replacing parts of simple initial

ones using a set of rewriting rules or productions.

The idea of rewriting is not new, it was firstly introduced by Chomsky for the

generating of strings.

In 1905 Koch proposed the same mechanism for generating curves.

2. Fundamental theoretical concepts of a Lindenmayer system

Let V be an alphabet and }{* λΥ+=VV the set of all strings (words) over V,

where λ is the zero-lengthed word. Any subset of is called a language. *V

Definition 1.1 : An OL system is a tidy triplet),,(PVG ω= where:

• is an alphabet V

• and this symbol is called the axiom of the system +∈Vω

• is a finite set of elements which are called productions kVVP ×⊂

• for each there is at least one word Va∈ χ for which Pa ∈),(χ

[1].

 4

A production),(χa is denoted by: χ→a since this represents the replacing of

a with the symbol χ .

The last condition from definition 1.1 is not restrictive. If for a symbol Va∈

there is not any production Pa ∈),(χ then the production for P can be added.),(aa

 Definition 1.2: An OL-system is deterministic (or DOL-system) if for each

 there is one and only one word Va∈ Va∈ for which Pa ∈→ χ .[2]

 Definition 1.3: Let be an arbitrary word over V. It is said that

the word is directly derivative from

*
1... Vaa k ∈=µ

*
1... Vaa k ∈=µ µ and it is denoted by

 if and only if *
1... Vk ∈⇒ χχµ Pa ii ∈→ χ for each },...,1{ ki ∈ . The reflexive

and transitive closing of the “ ” relation is “ ” [3]; e.g. the development of the

Anabaena Catenula filament can be described by a DOL system. The cytologyc states of

a corpuscle are denoted by u and v. Using l and r to indicate the polarity of a corpuscle

(left and right respectively), the development of the microorganism can be written by the

DOL system below:

⇒ *⇒

ru:ω

rlr vuup →:1

rlr uvup →:2

rr uvp →:3

ll uvp →:4

Starting with theω axiom the following are obtained:

ru

rlvu

rrl uuv

rlrll vuvuv

…………

Definition 1.4: A word v is generated by the G OL-system,),,(PVG ω= ,

if there is derivation of the v word from ω , in G. v*⇒ω

 5

The language generated by G is: . [4] }/{)(* vvGL ⇒= ω

A word v is directly derivative from µ using a process chraracterized by a

parallel replacing. This means that all the symbols from µ are replaced simultaneonsly

with some words, which are defined using some productions.

The Lindenmayer systems have many implications in the theory of formal

languages in the moulding of the development of some microorganisms.

Generating drawings using a Lindenmayer system

 The “turtle” interpretation of a word is introduced. First of all, a turtle state is a

triplet),,(αyx , where (x,y) are the cartezian coordinates of a point and α is the measure

of the defined angle. The),,(αyx triplet is interpreted as follows: one can imagine a

virtual pencil (or a turtle) which can draw a trace; (x,y) are the coordinates of the point

where the virtual pencil is placed, and the angle α is the direction straight forward.

 d denotes the length of a segment and δ a value which is used as a value of

incrementation for the angle that defines the direction forward of the virtual pencil.

 The basic controls for the virtual pencil are symbolized like this:

F: move and draw forward with a step of length d. Thus, if the position of the

virtual pencil is (x,y) then the new state is , where and

. A segment of line from the point (x,y) to the point (x’,y’) will be drawn.

),,('' αyx cos' αdxx +=

αsin' dyy +=

f: move forward with a step of length d, without drawing anything

+: rotation to the left with theδ angle; if the actual turtle state is),,(αyx , then

the new turtle state will be .),,('' δα +yx

-: rotation to the right with theδ angle; if the actual turtle state is),,(αyx , then

the new turtle state will be .),,('' δα −yx

[: remember the current position

]: return to the last remembered position

 6

A snapshot of commands for the virtual pencil is a word . Let it

be supposed that the initial turtle state is

*},,,{ −+∈ fFv

),,(000 αyx . The angle 0α defines the direction

forward. If an angle δ and a word over the alphabet },,,{ −+fF are taken then the road

drawn by the virtual pencil is established.

A Lindenmayer system where and each production is either *},,,{ −+∈ fFv

vF → or with is considered. vf → +∈Vv

A segment of line F with the length d is transformed into broken line using a

procedure which is described below.

 A B

 Figure 1: The decod

Let A and B be the e

vFp →: , where .

broken line with the extrem

which has the extremities A

recalculating the next step. F

*Vv∈

FFFFp +−→:

Decoding the snapsh

a step and 2d 90=δ the

obtained. Taking

extremity coverlaps A then

so far. The same transforma

4/2 dd =

C

ification of snapshot: F-F+F+FF-F-F+F

A

xtremities of the segment. A production

Interpreting the snapshot of command

ities C and D is obtained. is calcul

 and B and is replaced with the broke

or example consider the production:

1d

FFFFF +−−+ .

ot of commands FFFFFF ++−→

 line drawn with C and D as its extre

, where d is the length of the segment F

the extremity D overlaps B. This is a on

tion is used for each segment of the po
D

 in a broken line

B

 Pp∈ is chosen i.d.

s v with a step a

ated for the distance

n line obtained after

1d

FFF +−− using

mities in Figure 1 is

denoted as AB, if the

e step transformation

lygonal line obtained

7

after the first step. Then this transformation for each segment of the polygonal line

obtained next is repeated.

Now, interpreting the axiom as a polygonal line, the initiator is obtained.

For each segment of the the above discussed initiator transformation is used, then

the procedure for each polygonal line obtained is repeated. This procedure can be

repeated as many times as desired and the method obtained is called Koch’s

Construction.

Figure 2: Koch’s Construction

For example, take into consideration the Lindenmayer system:

FFFF −−−:ω

FFFFFFFFFp +−−++−→:

and let 90=δ . The initiator is a square. Using Koch’s Construction, the drawing

in Figure 2 is obtained.

3. Implementation remarks

The application that was developed uses Java. To generate the drawing for a step

bigger than 0, recursivity is used. Any expression which must be generated for “n” steps

is reduced to “n-1” steps. Then, the expression becomes “n-2” reduced and so on until it

reaches step 0.

To represent the entire drawing, a scaling of it must be made. Before drawing, the

maximum real value of the X coordinate, the maximum real value of the Y coordinate,

the minimum real value of the X coordinate, the minimum real value of the Y coordinate

 8

have to be calculated. The window where it will be drawn which is between 200 and 500

is chosen. This is how the scalar factor will be found. Each point which will be shown on

the screen will be multiplied with this factor, and after word if will be rounded to the

closest integer and will be shown.

The application has 3 options: Turtle, Tree (uses “[“ and “]” in writing) and

Combination (shows the expression of ω , starting from step 0 to the specified step).

Firstly the expression of F is introduced, then the expression of ω (Start) then the angle

and the step and finally one of the options is chosen. If Tree is chosen, ω (start) can

deprive because only the expression of F will it be interpreted.

4. The algorithm

The input data is made of:

ω : the initial figure;

F: the transformation; (for the AB segment, F must reach B)

δ : the winding angle;

The algorithm contains 5 steps:

Step 1. Calculate the relation between the segment in step n and the one in step

n + 1

Step 2. Determine the real display window

Step 3. Determine the screen display window

Step 4. Determine the scaling factor from real space into screen space

Step 5. The effective drawing of the picture

 9

5. Experimental results:

Results are shown below:

6. Conclusions and future work:

This application is not the fastest, but it can be optimized by pre-calculating the

values of the sinuses and co sinuses. Further work can be added in order to extend this

program to represent not only the 2D Lindenmayer systems but also the 3D Lindenmayer

systems.

 10

7. Acknowledgements

We would like to thank Professor Nicolae Tandareanu, Professor Ruxandra

Gorunescu and Professor Catalin Stoean who were very close to us and helped us

through the making of this article. Without their help this article wouldn’t have existed.

8. References

[1] Csima Judit Lindenmayer systems http://sziami.cs.bme.hu/~csima/phd1/node13.html

[2] Arto Salomaa: Developmental Models for Artificial Life: Basics of L Systems, in

Artificial Life-Grammatical Models, Ed. Gh. Paun, Black Sea University Press, 1995,

p.22-32

[3] Jurgen Dassow: Cooperating Grammar Systems (Definitions, Basic Results, Open

Problems), in Artificial Life-Grammatical Models, Ed. Gh. Paun, Black Sea University

Press, 1995, p.40-52

[4] Gheorghe Paun: New Variants of Lindenmayer Systems with Biological Motivation,

in Artificial Life-Grammatical Models, Ed. Gh. Paun, Black Sea University Press, 1995,

p.129-136

Dobrin Mihai, student in the 3rd year at the Faculty of

Mathematics and Computer Science, Department of Computer Science,

University of Craiova. Recently, I was appointed junior member at the

Research Center for Artificial Intelligence (RCAI). My hobbies are:

computer (especially programming), beekeeping, classical music. At

 11

http://sziami.cs.bme.hu/~csima/phd1/node13.html

this moment I am working on a program for topography at a firm in Craiova. I spend my

spare time as a scout at the Rabon-Cfr group or… between the bees…beekeeping

them!…

Sandu Andrei-Constantin was born in Craiova in 1982. In

the present, he is a student at the Faculty of Mathematics and

Computer Science at the University of Craiova and he is a junior

member in a group of students from the same university who

dedicate their time to finding new ways of improving the knowledge

they acquired from their teachers, by participating to local, national and international

contests where he himself obtained good results. He also studied in Spain in 2003, at the

Autonoma University of Madrid .

 12

Admission decisions for candidates to a

competition through Minsky frames

Abstract

In this paper some theoretical concepts of Minsky frames are presented and a practical illustration
of these concepts is intended. The application could be used as a means of deciding acceptance of
candidates at a competition.

1. Introduction
Proposed paper presents some of Minsky’s concepts and shows a practical

implementation of this theory in a decision-making process regarding acceptance of
candidates at a competition.

Marvin Minsky is one of the inventors of the field of Artificial Intelligence. In fact,
some call him the "father of Artificial Intelligence". He has contributed many important
ideas and concepts to the field of AI. He was one of the first people to explore the area
and he still remains as one of the leading researchers today.

In the 1970’s he invented a form of knowledge representation known as "frames".
These "frames" were a lot like forms that could be filled in with data. He could represent
knowledge in many areas including language understanding and visual perception. These
were not only useful to Artificial Intelligence, but they are considered to be some of the
earliest forms of object oriented programming. But Minsky’s largest contribution was yet
to come.

What are frames? What problems are frames supposed to solve? How?

Minsky tackles the problem of knowledge representation by creating a model of
how we represent and store knowledge([2],[3]). It states that we organize and store our
knowledge of the world symbolically through frame representation. A frame is a set of
terminals containing characteristics of specific information. A system identifies
information based upon the characteristics of the information held in the frame.
Frames are supposed to solve the mystery of the organizational structure of knowledge in
humans and other cognitive machines by solving problems such as efficiency,
adaptability and sufficiency. Frames are sufficient to hold enough characteristics to
identify the desired knowledge, they are highly organized and therefore efficient, and
they are also adaptable because the information held in the frames is able to be
manipulated based upon knew knowledge.

2. Fundamental theoretical concepts of Minsky frames

2.1 The intuitional aspect of the concepts

 In this paragraph it is considered that a frame F is characterized by the following
elements([1]):

 13

• a symbolic name which represents the name of the frame; each frame has a
unique name; the name of the frame is used for its identification.

• a finite set of symbolic names; each name represents the parent of the frame; a

frame can have zero or more parents.

• a finite set of slots; a slot is an orderly couple of (attribute, value), where

attribute is the name of the frame’s property and value is the adequate value
hereof.

A frame is represented by a diagrammatic drawing as in Figure 1, where attributei≠

attributej for i ≠ j. The number of parents and the number of slots can differ from frame
to frame. Presume that the value V of attribute A of frame F is wanted. The following
cases are possible:

• There exists a slot S formally denoted by (A,V) or (A,P), where V is the

direct value of the attribute and P is the name of a procedure; in the first
case V is the value of attribute A; in the second case, the value of the
attribute is a value returned by the procedure P.

• There is no slot of F so that A be the first component of the slot; in this
case, what is tried is to find the value of the attribute with the help of the
respective object parents, i.e. the value of the attribute A is hereditary; if
none of the parents of F contain the respective attribute, their parents are
used and so on.

name_of_F
name_of_parent_1

………...
name_of_parent_k

attribute1 value1

…….. …….
attributen valuen

 Figure 1. The graphical representation of a frame.

2.2 The formal aspect

 Syntactically, it is considered that a frame is a formal string([1])
 frame(frame_name, list_of_parent_names, list_of_attributes) (1)

 where

• frame_name is the name of the frame;

 14

• list_of_parent_names is a list of frame names which represent the
parents;

• list_of_attributes is a list of elements having one of the next forms:
- attr(name_of_attribute, value);
- attr(name_ of_attribute, proc(name_of_proc));
- attr(name_ of_attribute, daemon).

The entity value represents the direct value of the attribute; name_of_proc

represents the name of a procedure which calculates the value of the attribute; the word
daemon means that there is an abstract attribute whose value can be calculated through a
procedure or specified as the direct value of a particular object.

Let a Knowledge Representation and Processing System(KRPS) based on frames be
defined below. The elements of language LRepr will be words of the form (1). As soon as
we define the rules of constructing names of frames, names of attributes, names of
procedures and attribute values, the elements of LRepr can be constructed. VAttr denotes
the set of all direct attribute values. The elements of VAttr can by homogeneous or
heterogeneous. Hereby, VAttr can be a subset of the natural numbers set or can contain as
well numbers (real, integer), alphabetical strings and number strings. Lfr_name denotes the
set of names of frames, LAttr denotes the set of names of attributes and Lparent denotes the
set of names of parents. Because any name of a parent is a frame name, in general Lparent

⊆ Lfr_name and in the case there are certain rules concerning the frames which can be
parents then there is the strict inclusion Lparent ⊂ Lfr_name. Lproc denotes the set of names of
procedures and consider the set { }.|)(procAttrAttr LxxprocVQ ∈∪= The sets Lfr_name, LAttr,
Lparent and Lproc are formal languages and accordingly for each of them one of the
methods that define these languages are applied.

Definition 2.1 The representation language LRepr is the set of all words of the form:
 frame(name, [p1……pn],[attr(a1,v1),……,attr(ak,vk)]) (2)

 where s ≥ 0, k ≥ 0, name � Lfr-name, {p1, . . . , ps} � Lparent, {a1, . . . , ak} �
LAttr ¸si vi �
 QAttr �{daemon} for i � {1, . . . , k}

In relation with Definition 2.1 it can be said that the elements p1……pn are two by two
distinct and the same thing can be told about the elements a1……ak. But then, the same
condition for the values of the attributes does not hold and consequently can have the
case vi=vj and i≠j. In the syntactic structure of any word from LRepr the entity frame and
attr are key words.

 Definition 2.2 A finite set of frames syntactically represented by the form (2) is a
knowledge base with frames.

K, a knowledge base with frames is considered. Name(K) denotes that subset of the

language Lfr_name having all elements X if there is a frame in K with the name X.
Having a knowledge base with frames K, an oriented graph Gk=(Name(K),ΓK) is
considered where the nodes are names of frames from K and from node fu to node fv there
exists an arc, that is (fu, fv) � KΓK, if fu belong to the list of fv parents.

 15

The set of all paths from node x to node y in Gk is denoted by Path(x,y). The
element f is an predecessor of g if f ≠ g and there exists a path from f to g. Pred(g)
denotes the set of all predecessors of g. If f∈Pred(g) then dist(f,g) denotes the length of
the shortest path from f to g. If dist(f,g)=k then it is said that the “distance” from f to g is
k.

Definition 2.3 A predecessor f of g in the graph Gk is the nearest predecessor with
the α property if the next two conditions are realized:

• f satisfies the α property;
• there is any predecessor of g, namely h, so that h satisfy the α property and

dist(h,g)<dist(f,g)

The nearest predecessor of g, N.P {α }(g), denotes the set of all nodes that are the

nearest predecessors of g and satisfy the α property.
Generally, to obtain an admissible knowledge base of a KRPS, certain restrictions

about components are suggested. Following up, the conditions which are imposed to a
knowledge base with frames for being an admissible base are specified.

A knowledge base K with frames is considered. The first condition that is imposed
to K is named the C1 condition:

 frames (f,X,Y) ∈ K ,frames (f,U,V) ∈ K =>X =U,Y =V

This condition imposes the requirement that all the parents and all the attributes of the
frame to be defined in a single string of the form (2).

Let us consider a certain frame

frame f,[p1 ...,ps],[attr(a1, v1) ,...,attr(ak, vk)]) (3)

 of a knowledge base K with frames who satisfies the C1 condition.

Because all attributes of frame f are explicited in (3), so there are no other

attributes for f besides the attributes represented in (3) and the same property goes for the
parents of that frame, there are the following notations:

 Slot (f)= {(a1, v1) ,...,(ak,vk) }
 Parent (f)= {p1 ...,ps}

Through language abuse it is said that the name of the attribute ai belongs to the
frame f and it is written fai ∈ if there exists {daemonQu Attr ∪ }∈ so that

. Sometimes it is said, equivalently, that f includes attribute a() (fSlotuai ∈,) i.
 For any attribute let it be denoted that: AttrLa∈

 if ; }{)(ffNeara = fa∈
 PNfNeara .)(= {include a}(f) if fa∉ ;

 16

 Below let it be denoted by C2, respectively C3, the following conditions:

 Condition C2: For each name of frame f and for each name of attribute a

wherefore :)(),(fSlotdaemona ∈
Φ=⇒∈)()(Pr gNearfedg a .

 Condition C3: For any AttrLa∈ the set has at most one element.)(fNeara

The requirement of the C2 condition is bound by the mode that the daemon value of

an attribute is used and interpreted.

Definition 2.4. Let it be considered a knowledge base with frames K. The base K is

called an admissible base if it satisfies the conditions C1, C2, C3.

A procedure name P, , is considered. The expression is used

in the following to denote the returned value of the P procedure when the actual
parameters of the procedure are the values

ocLP Pr∈ (tvvP ,,1 Λ)

tvv ,,1 Λ . Generally, the values are
the values of the attributes. Let it be denoted by

tvv ,,1 Λ

taa ,,1 Λ),,()(1 tAttr aaPDom Λ= .
The value of an attribute can be an element of the set . },{ unknowndaemonVAttr ∪
The value returned by the procedure P can be:

1) P(v1, . . . , vt) ∈ VAttr if v1, . . . , vt ∈ VAttr

2) P(v1, . . . , vt) = unknown if there exists i∈ {1, . . . , t} so that vi = unknown;
3) P(v1, . . . , vt) = daemon if for each i ∈ {1, . . . , t}, vi∈ VAttr∈{daemon}
and j∈ {1, . . . , t} so that vj = daemon;

Let it be considered that:

)}())(,(:),(/)(),{(Pr gSlotPprocaLPfNeargLKNameafN ocaAttrK ∈∈∃∈∃×∈=

If f ∈ Name(K) and Neara(f)=∅ then (f,a)∉NK.

Definition 2.5 Let K ∈ LKB be considered. The application ocKK LN Pr: →Ω is
defined so that : , where (a,proc(P)) ∈ Slot(g), g∈NearPafK =Ω),(a(f).
The application Ω K is called the extractive function for the knowledge base K.
For each K ∈ LKB the following set is considered:

})(,),(|)(),{(Φ≠∉×∈= fNearNafLKNameafM aKAttrK

The sets NK and MK are disjunctive sets.

Proposition 2.1 If (f, a) ∈ MK then there exists an element and only one u∈

VAttrΥ {daemon} so that (a, u) ∈ Slot(g), where {g}=Neara(f).

 17

Definition 2.6 Let K, an arbitrary element in LKB, be considered. The application
is defined so that: },,{: _ daemonundefinedunknownVLLComp AttrAttrnamefrK ∪→×

• If (f, a)∈ MK then CompK(f, a)=u, where u is the only one element from
the set VAttr }{daemon∪ so that {g}=Neara(f) and (a, u)∈ Slot(g)

• If (f, a)∈ Nk and (b1, …, bt) =DomAttr(),(afKΩ) , then:
- CompK(f, a)=)),(),...,,()(,(1 tKKK bfCompbfCompafΩ , if

 can be calculated.),(),....,,(1 tKK bfCompbfComp
- CompK(f, a)=undefined, if

cannot be calculated.
),(),....,,(1 tKK bfCompbfComp

• If)(\)(),(_ KKAttrnamefr NMLLaf ∪×∈ then . unknownafCompK =),(

The value CompK(f, a) of the CompK application in the (f, a) argument is the value
of the a attribute for the frame f.

Let be the query language and
 be the answer language.

AttrnamefrQ LLL ×= _

{ }daemonundefinedunknownVL AttrAns ,,∪=

 Definition 2.7 Let the inference relation � QKB LL ×⊆ be defined as follows:
 K∈ (f ,a) only if }{),(daemonVafComp AttrK ∪∈ .

Definition 2.8 The answer function AnsQKB LLLAns →×: is defined hereby as

follows:
),()),(,(afCompafKAns K= .

3. Proposed application

For the illustration of the above concepts let the problem of deciding admission of
candidates at a competition.

Let a knowledge base K be considered with the following elements:

frame("candidate",[],[attr("accepted","proc(calcAccepted)"),
 attr("age","proc(calcAge)"),
 attr("birthYear","proc(calcBirthYear)")]).

frame("veronica",["candidate"],[attr("english","very good"),
 attr("economy","9"),attr("birthYear","1974")]).
frame("mihai",["candidate"],[attr("economy","10"),attr("age","28"),
 attr("domicile","Craiova")]).
frame("maria",["candidate"],[attr("english","satisfying"),attr("economy","9"),
 attr("birthYear","1976")]).
frame("ionel",["candidate"],[attr("english","good")]).

 18

frame("aurel",["candidate"],[attr("english","very
good"),attr("economy","10"),attr("age","14")]).
frame("mirela",["candidate"],[attr("english","very good"),attr("economy","9")]).
frame("simona",["candidate"],[attr("english","good"),attr("economy","8"),
 attr("age","29"),attr("maried","yes")]).

3.1. Implementation remarks

The application that was developed uses Turbo Prolog Language and realises a
system based on frames for the determination of the results at a competition.

A candidate is declared accepted if:
 1. have 25-30 years;

 2. english qualificative-at most good.;
 3. economy note-at most 8.

The system takes the date from the computer and define the fact that
Satisfying< Good< Very Good.

3.2. Experimental results

domains
 attr = attr(symbol,symbol)
 latribute = attr*
 lparinti = symbol*
database
 frame(symbol,lparinti,latribute)

predicates
 giveVarstaAccept(symbol,latribute)
 varsta(latribute)
 economie(latribute)
 giveEconomieAccept(integer)
 giveEnglishAccept(symbol)
 english(latribute)
 scriuRezAdmis(latribute)
 concatattr(latribute,latribute,latribute)
 apartine(symbol,lparinti)
 apartineattr(attr,latribute)
 findneamu(lparinti,lparinti,lparinti)
 findallattr(lparinti,latribute,latribute)
 scotdubluriattr(latribute,latribute,latribute)
 meniu
 citimOptiune
 execut(symbol)
 scrieFrame(lparinti,integer,integer)
 calcCoord(integer,integer,integer,integer)
 verifAdmis(symbol)
 calificativ(symbol,integer)
clauses
 apartine(X,[X|_]).
 apartine(X,[_|L]):-apartine(X,L).

 apartineattr(X,[X|_]).

 19

 apartineattr(X,[_|L]):-apartineattr(X,L).

 concatattr([],L,L).
 concatattr([X|L1],L2,[X|Lrez]):-concatattr(L1,L2,Lrez).

 findneamu([],L,L).
 findneamu([Y|L],Ini,Fin):-frame(Y,LP,_),
 findneamu(LP,[Y|Ini],Fin2),
 findneamu(L,Fin2,Fin).
 scotdubluriattr([],L,L).
 scotdubluriattr([attr(X,Y)|L1],LTemp,LRez):-
 not(apartineattr(attr(X,_),L1)),
 scotdubluriattr(L1,[attr(X,Y)|Ltemp],LRez);
 scotdubluriattr(L1,LTemp,LRez).
 findallattr([],L,L).
 findallattr([X|LP],Lini,Lrez):-
 frame(X,_,La),
 concatattr(Lini,La,Lini2),
 findallattr(LP,Lini2,Lrez).
 calificativ("satisfying",1).
 calificativ("good",2).
 calificativ("very good",3).
 meniu:-shiftwindow(1),
 cursor(0,1),
 write("1 - Consulting of file BDC"),
 cursor(1,1),
 write("2 - List of all frames"),
 cursor(2,1),
 write("3 - Verifing the acceptance of the candidate"),
 cursor(3,1),
 write("4 - Exit program").
 citimOptiune:-
 shiftwindow(3),
 write(" Option: "),
 readln(X),
 execut(X).
 execut("1"):-
 shiftwindow(2),
 clearwindow,
 consult("comp.bdc"),
 write("Knowledge base was consulted with succes!"),
 citimOptiune.

 execut("2"):-shiftwindow(2),clearwindow,
 findall(F,frame(F,_,_),L),
 L=[],
 write("No frames!"),nl,
 citimOptiune;
 shiftwindow(2),
 clearwindow,
 write("Names of frames :"),nl,
 findall(F,frame(F,_,_),L),
 scrieFrame(L,1,6),
 citimOptiune.

 execut("3"):-shiftwindow(2),clearwindow,

 20

 write("Get the name of the candidate: "),
 readln(Nc),
 verifAdmis(Nc),
 citimOptiune.

 execut("4").
 execut(_):-shiftwindow(2),
 clearwindow,
 write("Inexistent command!"),nl,
 write("Please be careful!"),
 citimOptiune.

 calcCoord(X,Y,X1,Y1):-X1=X, Y1=Y+20,Y1<80;
 Y1 = 6,X1 = X+1.

 scrieFrame([],_,_):-nl,nl,write("The frames are listed!").
 scrieFrame([F|L],X,Y):-cursor(X,Y),
 write(F),
 calcCoord(X,Y,X1,Y1),
 scrieFrame(L,X1,Y1).

 verifAdmis(Nc):-not(frame(Nc,_,_)),
 write("The candidate does not exist!").
 verifAdmis(Nc):-frame(Nc,LP,LA),
 findneamu(LP,[],NewL),
 findallattr(NewL,[],NewLA),
 concatattr(NewLA,LA,NewLa2),
 scotdubluriattr(NewLa2,[],L),
 scriuRezAdmis(L).

 english(L):-apartineattr(attr("english",Calificativ),L),
 giveEnglishAccept(Calificativ).
 english(L):-not(apartineattr(attr("english",_),L)),
 write("The candidate not accepted!"),nl,
 write("Because don't have the note at english!").
 giveEnglishAccept(Calificativ):-
 calificativ(Calificativ,X),X<2,
 write("The candidate not accepted!"),nl,
 write("Because the note at english is too smal!").
 varsta(L):-apartineattr(attr("age",X),L),
 giveVarstaAccept(X,L).
 varsta(L):-not(apartineattr(attr("age",_),L)),
 write("The candidate not accepted!"),nl,
 write("Because the age is unknown!").
 giveVarstaAccept(X,_):-str_int(X,Y),Y<31,Y>24,
 write("The candidate was accepted!.").
 giveVarstaAccept(X,_):-str_int(X,Y),Y<25,
 write("The candidate not accepted!"),nl,
 write("Because the age is not in an admisible limit!").
 giveVarstaAccept(X,_):-str_int(X,Y),Y>30,
 write("The candidate not accepted!"),nl,
 write("Because the age is not in an admisible limit!").
 giveVarstaAccept(_,L):-
 apartineattr(attr("birthYear",X),L),
 str_int(X,YN),
 date(Y,_,_),

 21

 Varsta = Y-YN,
 str_int(StrVarsta,Varsta),
 giveVarstaAccept(StrVarsta,L).
 giveVarstaAccept(_,_):-
 write("The candidate not accepted!"),
 nl,write("Because the age cannot be calculated!").

 economie(L):-apartineattr(attr("economy",Nota),L),
 str_int(Nota,NotaInt),
 giveEconomieAccept(NotaInt).
 economie(L):-not(apartineattr(attr("economy",_),L)),
 write("The candidate not accepted!"),nl,
 write("Because the note at economy not exist!").
 giveEconomieAccept(Nota):-
 Nota<8,
 write("The candidate not accepted!"),nl,
 write("Because the note at economy is too smal!").
 scriuRezAdmis(L):-
 english(L);
 economie(L);
 varsta(L).

goal
 makewindow(1,15,3,"<< OPTIONS >>",0,0,7,80),
 makewindow(2,15,3,"<< ANSWERS >>",7,0,18,80),
 makewindow(3,15,0,"",5,1,1,76),
 meniu,
 citimOptiune,
 removewindow,
 removewindow,
 removewindow,
 retractall(frame(_,_,_)).

 22

 23

Looking at the structure of the implicated frames and at the rules of acceptance, the
obtained results proved to be correct.

4. Conclusions

Minsky’s frames proved to be a very appropriate way to encode information and
fast and accurate means of deciding acceptance of proposed candidates to a competition.

5. Acknowledgements

I would like to thank Professor Nicolae Tandareanu, Professor Ruxandra

Gorunescu and Professor Catalin Stoean who helped me through the making of this

article. I would like to thank also to my work mate Orlando Gabriel Pirlog.

6. References

[1] N. Tăndăreanu: Sisteme expert. Reprezentarea cunoştinţelor
 şi inferenţa, Editura Universitaria, 2001

[2] http://ugrad-www.cs.colorado.edu/~cs3202/papers/Josh_Hogrewe.html

[3] http://www.arches.uga.edu/~jhobson/minsky2.htm

 24

http://ugrad-www.cs.colorado.edu/~cs3202/papers/Josh_Hogrewe.html
http://www.arches.uga.edu/~jhobson/minsky2.htm

Gabriel Voinescu,
student in the 3rd year at the Faculty of Mathematics and Computer
Science, Department of Computer Science, University of Craiova.
Recently, I was appointed junior member at the Research Center for
Artificial Intelligence (RCAI). My hobbies are: computers (especially
Operating Systems), all good music and walks.

 25

A method to compute the last non zero digit of n!

Abstract. The study of determining the last non zero digit of n! has been of wide interest to
mathematicians and computer scientists over the time. Multiple methods have been developed. Present
paper proposes yet another technique built to provide an algorithm of a very good complexity.

1. Introduction

A simple method for the problem would be to effectively calculate n!, and then
find the last non zero digit. The inconvenients of this method would be complexity of
O(n) order and also the fact that the number would be very big and difficult to retain in
an elementary type of data, needing the implementation of a type of data (array of digits)
which should retain very big numbers. This entails the increase of the run time and also
of the complexity which becomes O(()2

10log in).

2. Proposed method

Proposed method provides a very good complexity.
It is built upon certain properties of the function that provides the last non zero digit for a
number and on some particular characteristics of n!.

2.1 Properties of the function to provide the last non zero digit of a
number

Let f be the function to provide the last non zero digit, e.g. f(650) = 5 - the last
non zero digit of 650.
Some of its properties are studied below.

Proposition. f(n) represents the remainder of the division of n to 10 if n does not belong
to (M 5 denotes multiples of 5) 5M
Proof.

n not being multiple of 5, it results that it is not multiple of 10 either and that the last
digit of n is a non zero digit.

Proposition. f(f(n)) = f(n);
Proof.
 f(n) is a non zero digit, therefore f applied to a digit is the digit itself. Therefore if x =
f(n) than f(f(n)) = f(x) = x;
Example:

f(f(302)) = f(2) = 2 = f(302);

Proposition. f(a*b) = (f(a)*f(b)) mod 10 if a and b do not belong to (by n mod v it is
understood the remainder of the division of n to v). Since a,b

5M

5M∉ it results that f(a*b) is

 26

indeed the last digit of number n which is obtained by the product between the last digit
of numbers a and b.

2.2 Properties of n!

n! is the product of all the numbers from 1 to n or . ∏
=

=
n

i

in
1

!

If n this product can be rewritten as a product of products of 5 successive numbers
n!=(1*2*3*4*5)*(6*7*8*9*10)*..*((n-4)*(n-3)*(n-2)*(n-1)*n)

5M∈

or ∏∏
= =

+−=
5/

1

5

1

)5*5(!
n

i j

jin

Example:

50!=(1*2*3*4*5)*(6*7*8*9*10)*..*(46*47*48*49*50)

If n , n! = m!*(m+1)*..*(n) where m, the biggest multiple of 5 smaller or

equal to n, is rewritten afterwards.
5M∉

Thus it results that n!=((1*2*3*4*5)*..*((m-4)*(m-3)*(m-2)*(m-1)*m))*

(m+1)*..*(n)

 This product can also be written as

∏∏∏
+== =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

n

nk

n

i j

kjin
15*]5/[

]5/[

1

5

1

*)5*5(! or as a product of all the elements of this array.

 Li

i = 1 1*2*3*4*5

i = 2 6*7*8*9*10

i = [n/5] ([n/5]*5-4)*([n/5]*5-3) *([n/5]*5-2)*([n/5]*5-1)*([n/5]*5)

i = [n/5]+1 ([n/5]*5+1) *([n/5]*5+2)*..*(n)

where for i < [n/5] is iL

iiiiiL
iiiiiLi

i *5*)1*5(*)2*5(*)3*5(*)4*5(
)*5(*)1*5(*)2*5(*)3*5(*)4*5(

−−−−=
⇒−−−−=

where [x]=is the biggest integer smaller or equal to x.
R n = L in case n or R n = 1 otherwise. 1]5/[+n 5M∉

 27

C i =L i /i

It results that

1]5/[]5/[21 *]5/[**..*2**1*! += nn LnCCCn

L is replaced by R . 1]5/[+n n

nn RnCCCn *]5/[*..2*1**..**!]5/[21=

1*2*..*[n/5] is replaced by [n/5]!

nn RnCCCn]!*5/[**..**!]5/[21=

n! depends on [n/5]!

]5/[]25/[21]!*25/[**..**]!5/[nn RnCCCn =
……………………………………………

]5/[
]5/[

1
]5/[

]5/[]!*5/[*]5/[nn
nn RnCn =

From proposition 2 it results that:

2)5*4*3*2*1()(== fCf i for i 2]}5/..[1{ Mn −∈
2)5*9*8*7*6()(== fCf i for i 2]}5/..[1{ Mn ∩∈

It then results that .]5/[

][log]!*5/[*2! 5
n

n Rnn =

By introducing in this relation the formula for [n/5]! and then recurrently [n/5]
,[n/5 3] … factorial it results:

2

10mod)(*2)!(

*2!

1]5/[

1
]5/[

][log

]15/[

1
]5/[

)][log

]5/[

1
5

]5/[

1
5

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ∑
=

⇒
∑

=

∏

∏

+

=

+

=

=

=

n

i
n

n

n

I
n

n

i

n

i
i

i

n

i
i

Rfffnf

Rn

It can be observed that f(2) is periodical of period 4 f(2)= f(2) for k>0
because 2 , f(2)=f(f(2)*f(16))=f(f(2)*6);

n k 4+k

4216* += kk 16*k k k

{ })6*)2((8,6,4,2)2(kk fff ⇒∈ = because)2(kf
f(2*6)=2;

 28

f(4*6)=4;
f(6*6)=6;
f(8*6)=8;

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∈+∈

∈+∈

∈+∈

∈+∈

=

=

+

+

+

+

Niin
Niin
Niin
Niin

n

f n

,14,8
,24,4
,14,2
,14,6

0,1

)2(

What remains to be calculated is only the index of the power of 2 and the product of
R at each step]5/[in

Example for n=302

 Li

i=1 1*2*3*4*5

i=2 6*7*8*9*10

I=[302/5]=60 296*297*298*299*300

I=[302/5]+1=61 301*302

5*299*298*297*296
.......................................

5*14*13*12*11
5*9*8*7*6
5*4*3*2*1

/

60

3

2

1

=

=
=
=

⇒=

C

C
C
C

iLC ii

 It can be noticed that

302*301!*60**..***!302
302*301*60*.*.3*2*1**..***!302

302*301*60**...*3**2**1*!302

60321

60321

60321

CCCC
CCCC

CCCC

=
⇒=

⇒=

The algorithm is applied for n=60

 Li

 29

i = 1 1*2*3*4*5

i=2 6*7*8*9*10

i=[60/5]=12 56*57*58*59*60

I=[60/5]+1=13

5*59*58*57*65
.................................

5*9*8*7*6
5*4*3*2*1

/

12

2

1

=

=
=

⇒=

C

C
C

iLC ii

 It can be noticed that

!12**..**!60
12*.*.2*1**..**!60

12**...*2**1*!60

1221

1221

1221

CCC
CCC

CCC

=
⇒=

⇒=

The algorithm is applied for n=12.

 Li

i=1 1*2*3*4*5

i=2 6*7*8*9*10
I=[12/5]+1=3 11*12

5*9*8*7*6
5*4*3*2*1

/

2

1

=
=

⇒=

C
C

iLC ii

The algorithm is applied for n=2

n!=2;

 30

In conclusion:

;210mod32)!302(
10mod))2*2*1*2(*4()!302(

10mod))302*301*12*11*2(*)2(()!302(

302*301*12*11*2***.***!302

302*301*12*11!*2****..****..***!302
302*301!*12**..****..***!302

302*301!*60**..***!302

21260

6013
2

12
2
3

3
2

3
1

21122160321

122160321

60321

==
⇒=

⇒=

⇒=

⇒=
⇒=

⇒=

++

f
ff

fff

CCCCCC

CCCCCCCCC
CCCCCCC

CCCC

3.Conclusions

This method has the complexity O(), a lot smaller than other methods.
Proposed method resolves many of the inconvenients of the others not only from the
memory point of view, not needing the allocation of a considerable memory area, but
also of the type and implicitly of the number of operations.

n5log

Example:
 For n=1220703129 only 15 divisions are made and 29 operations of finding the
remainder.

4.References

 [1] http://www.acm.inf.ethz.ch/ProblemSetArchive/B_US_SouthCen/1997/Facts.html

5.Acknowledgements

I would like to thank Professor Nicolae Ţăndăreanu for giving me the opportunity
to write this article.

I would like to thank Professor Ruxandra Gorunescu and Professor Catalin Stoean
for the help and support in the writing of this article. Many thanks go also to my
colleagues: Mihai Dobrin, Dumitru Marusi, Orlando Pirlog for our first attempt in
solving this problem some years ago.

Sandu Andrei-Constantin was born in Craiova in 1982. In
the present, he is a student of the Faculty of Mathematics and
Computer Sciences at the University of Craiova and he is a junior
member in a group of students from the same university who
dedicate their time to finding new ways of improving the
knowledge they have acquired from their teachers, by p
to local, national and international contests where he obtained

good results. He also studied in Spain in 2003, at the Autonoma University of Madrid.

articipating

 31

http://www.acm.inf.ethz.ch/ProblemSetArchive/B_US_SouthCen/1997/Facts.html

e

Abstract

Games are of

evolved into this particu

games are made.

Card games

 Card games
interesting and a lot
casinos and at any c
 Hundreds of
have had lasting app
exist.
 A possible c

• The first
entire su
various f

• A second
valuable
known a
non trum
the captu

• The obje
assembli
widely p

• Constitu
wager th
their opp

• A final g
games as
cribbage

For more inf

Rummy gam

The Rummy
rummy game is a b
on them. The PC ga
built.

The Rummy Gam

ten encountered. Because almost everyone uses computes, the games industry

lar domain. I am trying to present in the following a little about how the computer

 - Introduction

constitute one of the playing domains. This type of games is very
 of people spend time and money on it. They are widespread in all the
orner.
 card games have been devised over the centuries, but relatively few
eal. Poker, for instance, is based on several games that no longer

lassification of card games into five broad categories was made:
 group includes the trick-winning games, in which certain cards or an
it are designated trumps (highest ranking cards). Among these are the
orms of whist, bridge, and euchre.
 group comprises games in which the object is to own or win certain

 counting cards and sometimes to show specific scoring combinations
s melds. Among such games are pinochle, bezique, and piquet. The
p game of casino and the game of hearts, in which the aim is to avoid
re of counting cards, can also be included in this category.
ct of another group of games is to obtain a given score by matching,
ng, or discarding cards. Of these, the rummy games are the most
layed.
ting a fourth category are the showdown games, in which players
at they can show cards, or combinations of cards, outranking those of
onents. Poker is the best known of the showdown games.
roup, based on adding or matching numbers, includes such betting
 black jack (also known as twenty-one), baccarat, chemin de fer, and
.
ormation see [4].

e particularities

 is a category of card games. There are many types of rummy. This
oard game and the payer’s cards are little plastic boxes with numbers
me doesn’t implement all the rules of the real game, but the base is

32

 A player is declared winner if all its cards represent valid formation of minim 3
cards. There are two types of formation:

• Same color, consecutive numbers
• Different colors, same numbers.
There are 106 cards: eight formations of 1 to 13 numbers of four colors – two

colors for each, and 2 jokers. The cards are randomized in 7 cards columns, resulting 15
columns and one card. The number of that card represents the first playable column.
Starting with column, each player receives two columns, resulting 14 cards for each of
them. The first player receives one card more.

If a player has 15 cards, he must drop one off its board and if he has 14 and it is
his turn, he must take the next card from the cards columns.

The joker can be used in place of any card.

Formation of same numbers
with different colors

Formation that use joker

Formation of consecutive
numbers with same color.

The consecutive formations are calculated modulo 13. It means that the formation
(12, 13, 1) is valid. In the same number formations there can’t be use cards with same
color.

How does the computer think?

The Rummy Game implements an algorithm for computing the pieces list

according to the rules of the game. At this level, the algorithm is very simple. The
priority is represented by the consecutive numbers formations. This algorithm is
presented below:

• The pieces are sorted by colors and by numbers.
• The consecutive formations are isolated from the others pieces.
• With the remaining pieces it is tried to build the other type of formation (same

number, different colors).
• The joker will be appended only at the 2-pieces formation of any of the two

types (this is a disadvantage because if the player has all formations built and
one joker, he can’t append the joker to a formation).

• The dropped piece will be the last one. Here, again it is a discomfort. The
remaining pieces are ordered by colors.

 33

Why 3-D?

Today, most of the games are made in 3-D. A 3-D game is more real than a 2-D

game. In this rummy game you will note that particularity. Having control of the camera
makes you believe that you are really playing rummy with some friends. The hand is very
important, too. You don’t have only a rectangle to select a piece, but that piece ‘is in your
hand’.

Now let’s see how a 3-D game is build. The important thing is to know something

about Physics and Three Dimensional Geometry.

Physics helps create games to appear more real. The physical principles are based

on true demonstrations and they represent the mathematical interpretation of the things
that happen around us. If a leaf falls from a tree, it will never go up. Till then it will hit
the ground. To this mechanism the gravitational force, the weight of the leaf, the wind,
they all contribute. If you push a ball on the ground there are some particular issues that
characterize the ball’s movement. Here the chafe force intercedes that slows down the
ball’s speed. Physics demonstrate mathematical formulas for the speed, acceleration, and
the direction that the ball will follow. These formulas are used in games and in this way,
the player is really enjoying seeing that the real things can be simulated in a virtual
world. Here it is more than calculating formulas and drawing a world. The virtual world,
and in particular the games try to create what we perceive as being natural. But, can it be
created as it is?

In the Rummy Game Physics isn’t used, so our discussion won’t continue in this
domain. For more information see [3].

The next important thing is how to represent the computations made by Physics.

Geometry defines a set of formulas used to manipulate objects in a predefined space. The
games use 3-D axe who define our work space (scene). There are two types of Cartesian
Coordinates:

• Left-handed Cartesian Coordinates.
• Right-handed Cartesian Coordinates.

The type of Cartesian coordinates used determines the order in which the vertices

of the object will appear in the object. If in left-handed Cartesian coordinates a triangle

 34

has its vertices v0, v1, v2, in right-handed Cartesian coordinates it must has the vertices
v0, v2, v1.

A 3-D primitive is defined as a collection of vertices that forms a single 3-D

entity.
Complex primitives are polygons. The simplest polygon is the triangle. 3-D

objects, generally, are formed only from triangles, because is very simple to create them.
In conclusion, a 3-D object is a collection of vertices, linked between them and the result
is a closed surface. Its components are: vertices, edges and faces.

This box is a 3-D object. It has 8 vertices, 18 edges and 12 faces. The faces are
triangles.

 Smooth box Wire box

For more information see [1] and [2].
From this point of view, a game can be defined as a lot of 3-D objects that are

moving in the scene. Every game has its own rules that will be obeyed by these objects.
An object can be a human body, a car, etc. For example, in the rummy game, the objects
are: the table and the chairs, the user’s board on which the pieces are placed, the hand and
the pieces. The only moveable objects are the pieces. Their coordinates are changing
using the 3-D transformation.

It is important to notice that, at the beginning of the game, all the objects have
their coordinates around the scene’s origin (0, 0, 0). In this way, the transformations can
be easily applied to the object. And anyway, any object must be built with its local
coordinates. When the object is inserted into the scene the reference to the object is made
through its local coordinates.

3-D Transformations

In applications which work with 3-D graphics the most commonly used are
transformations. You can use geometrical transformations to do the following:

• Change objects position.

• Resize objects dimension.

• Rotate objects around one given point.

 35

• Change viewing positions, directions, and perspectives.

A point can be transformed into another point by using a 4×4 matrix. In the
following example, a matrix reinterprets the point (x, y, z), producing the new point (x',
y', z').

Transformations are of three types:
• Translation.

The vector’s components (Tx, Ty, Tz) are added to the point’s components
(x, y, z) and the result is the point (x', y', z').

• Scaling.

The vector’s components (Sx, Sy, Sz) are multiplied to the point’s
components (x, y, z).

• Rotation.

There are three types of rotations, each one of them on one axis, and the
result is the rotated point around the axis with the angle θ:

o Around the x-axis:

o Around the y-axis:

o Around the z-axis:

 36

These are the things needed to move objects in a 3-D space.

In the rummy game there are used only translation and rotation. A little example

will explain more about this. To put a piece to the 2nd user’s board there must be
performed the next computations for the piece’s coordinates:

RX (PI + 0.1) * T (0 + x, 102 + y, -51 + z) * RY (PI / 2).

For the translation vector, x, y and z values are computed with help from the

index of the piece’s position on the user’s board and (0, 102, -51) is the position of the
user’s board. For the 3rd and 4th user, the RY’s angle must be PI and 3 * PI / 2.

Conclusions & Future Work

• There must be made several improvements in using the joker. At this level,

the joker can be inserted only at the end of the formation, not inside it.
• For the dropped piece, there is no sorting algorithm to determine the distance

between a piece and a corresponding formation. One of my goals concerning
improvement of the application is to build an algorithm in this scope. For any
of the remaining pieces, the distance between it and any of the corresponding
formation will be computed. Afterwards, the pieces will be sorted using this
flag. The longest distanced piece will be dropped.

• When a player closes his board, there must be made the computation of the
pieces for all the players. But this in a career game version.

• Other important improvement that can be made is to compute all the
possibilities to have formations and to choose the optimal one.

References

[1] – DirectX Documentation for C++.
[2] – Computational Geometry course (MIT Craiova – Mihaela Sterpu).
[3] – High school Physics manual (Mechanics).
[4] – History of Card Games (http://www.play-online-black-jack.com).

 37

http://www.play-online-black-jack.com/

About me

I am 21 years old and I am from Piatra-Olt, Olt. When I was a

kid I often played with my friends. The first thing that I did with a
computer was playing (The Lion King).

Maybe it does not sound to well, but now, I do not like to play
computer games as I used to do before. It is a problem of etics. Almost
all the computer games encourage to violence.

I like classical music, geometry and all the scients that uses it (I
just like them, this does not mean that I know them well). I also like

everything that is natural (trees, lakes, sky and walking through them). And I like all the
nice things.

I hope you will enjoy with the new 3D Rummy Game.

Udrescu Bogdan George, MIT Craiova, December 2003.
E-mail: m3d@email.ro

 38

e
u

m

An application to Knowledge Representation and

Processing Systems

1. Abstract

This paper refers to the category of Knowledge Representation and Processing System. A system of
this type represents a method to store, manipulate and consult information. An application to illustrate such
a system is presented.

2. Introduction

A Knowledge Representation and Processing System (KRPS) is a compact
collection of components, well linked one to another, a collection which makes the
system “think”. The system is able to give an answer to a question, and for that it uses a
knowledge base and a specific knowledge representation method. The knowledge base
used by the KRPS is a collection of entities having a syntactical structure in concordance
to the knowledge representation method, which gives the opportunity, after a process of
reasoning, to get information about the objects represent in the base. The roles of systems
of this kind are: firstly to give answers about the objects represented in the knowledge
base and the secondly to update the knowledge base([3]).

3. Theoretical fundamental concepts of a KRPS

Let V be an alphabet, V ≠ ø and V+ the smallest set with the next properties:

•
+⊆VV

• if and then .
+∈Vw1

+∈Vw2
+∈Vww 21

The elements of V+ are called “words” over the alphabet V.
For each element there is a and there are so that

. The number is called the length of the word. If and
 then the word is obtained by the concatenation of and . Any subset

of is called a language over V . In the theory of knowledge bases the case when is
qual with 0 is not considered, although in the general language theory the null word is
sed.

+∈Vw 1≥k kaaa ,...,, 21 V∈

kaaaw ...21= k w 1w +∈V
+∈Vw2 21ww 1w 2w

+V k

A Knowledge Representation Processing System is a set of components which

ean in their entirety:
• the syntactical structure of the entities;
• the functions that the system realizes;
• the way of reasoning.

 39

Let V be an alphabet and let be a subset of ([1]). eprRL +V

Definition 1.1
A knowledge base K over V is a finite subset of . eprRL
In consequence, to define a knowledge base it is necessary to specify:

• the representation language , the V alphabet and the constructions

rules for the elements of .
eprRL

eprRL

• the rules for the K ⊆ eprRL base elements selection ([1]).

There is a knowledge base and a restrictions set, ⊆K eprRL R , over its elements. If
all K ’s elements satisfy the restrictions then the base is called an admissible knowledge
base. The restrictions set, R , is the same for all bases attached to the KRPS. Let be
the set of all admissible knowledge bases with respect to the set

KBL
R .

Let K KBL∈ be an admissible knowledge base. A K interrogation is the process
where-through we ask a question to the KRPS. A question is an element of - the
query language. The answer to the question is an element of - the answering
language. Let be a question addressed to the relative system over an admissible
knowledge base, then is the answer given by the system. So, the answer
function is . The answer to an interrogation is obtained after a
deduction. The deduction is a binary relation, it is characteristic to each system and it is
symbolized by . The deduction is the same for any admissible knowledge
base of the system. The deduction and the answer function are well linked. If

QL

AnsL

QLw∈

),(wKAns

AnsQKB LLLAns →×:

QKB LL ×⊆
K

w then contains all the interrogation solutions.),(wKAns w
Let be an introduction language. Its elements are used to update a knowledge

base. The update process is defined by the function
IL

KBIKB LLLUpd →×: , which is
called the update function. The update function is applied to an admissible knowledge
base (its function is to modify or create new elements for the knowledge base) and
another admissible knowledge base is obtained in the process.

Definition 1.2

A system is called a Knowledge
Representation and Processing System.

,,,,(IAnsQKB LLLLS =),UpdAns,

The component of S have the following significance.
• represents the all admissible knowledge bases set. An admissible

knowledge base satisfies the restrictions set,
KBL

R .
• represents the query language. QL
• represents the answering language. AnsL
• represents the introduction language. IL
• represents the deduction relation realized by S.

 40

• represent the answer function. AnsQKB LLLAns →×:
• represents the update function ([1]). KBKB LLUpd ×:

Concerning the deduction relation of a KRPS, a lot of properties have been studied
over the time.

Let S be a KRPS, , and for a given knowledge
base let .

,,,,(IAnsQKB LLLLS =),, UpdAns

KBLK ∈ KLwKC Q |{)(∈= }w
The reasoning defined by the deduction relation α of the system is:

• reflexive, if ;)(KCK ⊆
• idempotent, if))(()(KCCKC = ;
• monotone, if ([1]))()(2121 KCKCKK ⊆⇒⊆

From all of these properties, the monotone property is the most important. A
reasoning is monotone if all things that are deduced from any admissible knowledge base,
are still deduced from any other admissible knowledge base that includes the first one.

4. Representing and Processing data using KRPS.
The , , and sets are introduced. FS CS PS VS

• is a set of symbols of functions. To each symbol of this type, a
natural number called the arity of the respective symbol is attached. If a
symbol is a symbol with the arity equal to n, the symbol will be
represented by .

FS

FSf ∈
)(nf

• is a set of symbols called constants. CS
• is a set of symbols of predicates. To each symbol of this type, as in

the case of symbols of functions, a natural number called the arity of the
respective symbol is attached.

PS

The triplet is called a base. (PCF SSSB ,,=)
Let be a set of symbols of variables. A term is a constant, a variable or of the

form where and are terms over the base
VS

),...,(1 kttf F
k Sf ∈)(

ktt ,...,1 B .
An atom over the base B is an element that has the following form:

where and are terms over the base
),...,(1 nttp

P
n Sp ∈)(

ntt ,...,1 B ([1]).
A formula is an atom, the negation of a formula, the disjunction of two formulas,

the conjunction of two formulas. The negation of the formula is symbolized by F F− .
The disjunction of the and formulas is symbolized by . The conjunction of
the and formulas is symbolized by

F G GF ∨
F G GF ∧ .

Example 1

Let { }{ } { }())2()1()1(,,, qpafB = be a base. Let be the collection of all sets over
the base

KBL
B that do not contain variables. Let be the set of all formulas over the base QL

B using as variable the set . For each }{xSV = KBLK ∈ the deduction relation is defined
as:

 41

• If X is an atom es not contain variables then: that do
o (D1) K X if KX ∈ .
o (D2) K X if KX ∉ .

• If e ulas that do not contain variables over the base F and G ar form B then:
o (D3) K G if KF ∈ or KG∈ . ∨ F
o (D4) K)(GF ∨− if KF ∈− and KG∈− .

K GF F Ko (D5) ∧ if ∈ and KG∈ .
K)(GF ∧− KF KG∈o (D6) if ∈− or . −
K F−− if KFo (D7) ∈ .

• If m hat do tain r es enF is a for con iabl Kes va th ula t F if there is a
su ubstit tion σ so K σ

y
F .

Let { ut
Let be defined by the relation:

o If is a fo t do

Sub
s noesL 2}, ∪= , where Sub is the set of all substit

AnsQKB LLLs →×:
ions.An

An
w rmula tha es not contain variables then:

o If is a formula that does contain variables then: w

KSubwKAns |{),(∈= σ }σw .
Let be the set of atoms over the base B that does not contain variables. The

LL →×: is defined by t relation (Upd
IL

update function L wKwK ∪= ,
where “ ” is the reunion operation defined in the theory of sets.

S
ation and the way tha

(),,(),({ aafqpaaqapK =

KBIKBUpd he }{),
∪

Let ,,,,(KB LLLL=),UpdAns be a KRPS. Defining the components of a
KRPS means to create the general setting of knowledge represent t
these can be processed.

IAnsQ

Let)} be a knowledge base for the system S .),(()),(af
K is an admissible base because it contains only atoms without variables.

The function Ans can be evaluated.
o afaqapKAns .o)))(,()(,(n=∧

The answer is “no” because K)(ap but K)).(a
trating this is D5.

,(faq
The rule used to demons

yesafafqafpKAns =∨)))(),(())((,(.o
a KThe answer is “yes” bec use)(p a . The rule used to

The update

demonstrating this is D1.

of the K knowledge base with (p s realized by the Upd
st be applied to the knowle

)))((aff i
function which mu dge base K .

 1)))}((({))))(((,(KaffpKaffpKUpd =∪= .
(ffpaa

)))}((()),((),,(),{1 aafqafpaaqpK = ([2]).

((),),

 42

A KRPS to play the role of a Data Base Management System
5.1 Description of the Model

ucts in a
sh

5.

The following definitions describe the KRPS to store data about the prod
op.

),,,,(Re piecespricecantitynamecodeL pr = .
},,,),,,,(,),,,,(|{ 2121212122221111 uuttzzyyKutzyxKutzyxKLKB ====⇒∈∈=

},,,|),{(t otalvaluelistpieceslistpricelistallqqxLQ ∈= .

AnsQKB LLLAns →×:

}}{{ noStrRNLAns ∪∪∪=

}},,{|)),,,,,{((delchaddopoputzyxLI ∈=

KBIKB LLLUpd →×:

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

+∪=⇒
⇒∈∃=

=⇒∈∃=
∪=⇒∈∃=

+∪=⇒=∈∃
∪=⇒∉∃

∪=⇒≠∈∃
=

=

)}.,,20000,,{()}),,,,{(\(
),,,,(

3
2
1

11

1111111

LtzyxLtzyxKK
KLtzyxandchLop

t,u)} K\{(x,y,z,KK)(x,y,z,t,u del and op
u)}{(x,y,z,t,,u)}) ,t(K\{(x,y,zKK,u)(x,y,z,t ch and op

)} uu{(x,y,z,p,)}),p,u,z(K\{(x,yKp,K, t),p,u,z(x,y)
u)}{(x,y,z,t,KKK) (x,_,_,_,_)

,u)}{(x,y,,z,tKK pK,t)(x,_,_,p,_)
dadd anop

),z,t,u),opUpd(K,(x,y

αα
α

This reasoning is monotone, reflexive and idempotent([2]).

 43

5.2 Experimental results

ped using Visual C++. It needs an additional file to
store data. The data are represented in the following table.

This application was develo

First picture shows the system answer at the question)),3(,(listpriceKAns .

Next picture shows the system answer at the question .)),5(,(listpiecesKAns

The following pictures show the new K base after applying the update

Upd ,)_),_,_,_,,1(,(delK

nd the update which increases by 20.000 the price of

all products which are liquids.
a)),_,_,_,(_,,(chLwLKUpd

 44

6. Conclusions
KRPS systems are very appropriate to play the role of a Data Base Management

System. Moreover, they can encode additional information about the entities, information
that cannot be represented by the means of a DBMS but necessary to encode more
realistic characteristics of the entities.

7. Acknowledgements

I thank Professor Nicolae Ţăndăreanu because he has taught us the basic concepts

in Knowledge Bases and because he has shown so much trust in me and my colleagues
and has given me the opportunity to write this article.

I want to say „Thank, you!” to Ruxandra Gorunescu for her seriousness and
assiduity in teaching me and my colleagues the notions of Knowledge Bases.

I also thank Cătălin Stoean, for his support and because he showed me the
“undergrounds” of the Prolog language.

I especially thank my team mate and my best friend, Gabriel Voinescu, because he
has supported me when we have worked together on the majority of our projects.

8. References

[1] N. Tăndăreanu: Sisteme expert. Reprezentarea cunoştinţelor
şi inferenţa, Editura Universitaria, 2001

[2] Ruxandra Gorunescu, Knowledge Base Seminars, Faculty of Mathematics and
Computer Science of Craiova.

[3] Csima Judit Knowledge Processing & Applied Artificial Intelligence
http://www.scism.sbu.ac.uk/inmandw/review/knowacq/review/rev16576.html

 45

http://www.scism.sbu.ac.uk/inmandw/review/knowacq/review/rev16576.html

9. About me

Pîrlog Orlando-Gabriel, student in the 3rd year at the
Faculty of Mathematics and Computer Science of Craiova. I am
junior member at the Research Center of Artificial Intelligence
(RCAI). My hobbies are: motoring, football, programming and
listening to the 80’s music. Presently, I am working with my
team mates at an application for generating test papers.

 46

ABST
The c

build

article

Euler’

algori

s

A su

completely c

convex set c

Anal

all of the nai

Alternative d

P that contai

A po

dimensions:

flat polygon

This descrip

right class o

which are si

facing the di

skill for unde

The

objects: zero

dimensional

convex poly

Convex Hulls in Three Dimension

RACT

onvex hull of a set is the smallest convex set containing this set. The focus of this article is to

an algorithm for constructing the convex hull of a set of three dimensions points. In this

 the following concepts are presented: properties of polyhedra, proof and consequence of

s formula. The results are applied to the study of convex hull using an incremental

thm.

Introduction

bset P of the plane is convex if for every p, q ∈ P the line segment pq is

ontained in P. The convex hull of a set P, denoted CH(P), is the smallest

ontaining P.

ogy: if the points are nails on a board, a rubber band (convex hull) encloses

ls on the board.

efinition: CH(P) is the unique convex polygon whose vertices are points of

ns all points in P.[2]

lyhedron is the natural generalization of a two-dimensional polygon to three-

it is a region of the space whose boundary is composed of a finite number of

al faces, every two of which are either disjoint or meet at edges and vertices.

tion is vague, and it is a surprisingly delicate task to mate it capture just the

bjects. Since the primary concern of this description is convex polyhedra,

mpler than general ones, a precise definition of them could be avoided. But

fficulties helps develop three-dimensional geometric intuition, an invaluable

rstanding computational geometry.

boundary or surface of a polyhedron is composed of three types of geometric

-dimensional vertices (points), one-dimensional edges (segments), and two-

 faces (polygons). It is a useful simplification to the demand that the faces are

gons. This is no loss of generality since any nonconvex face is coplanar.

47

What constitutes a valid polyhedral surface can be specified by conditions on how the

components relate to one another. We impose three types of conditions: the components

intersect “properly”, the local topology is “proper”, and the global topology is “proper”.

2. Fundamental theoretical concepts of a polyhedra

1. Components intersect “properly”.

For each pair of faces, we require that either

(a) they are disjoint, or

(b) they have a single vertex in common, or

(c) they have two vertices and the edge joining them in common.

This is where the assumption that faces are convex simplifies the conditions.

Improper intersections include not only penetrating faces, but also faces touching in the

“wrong” way (see Figure 1). There is no need to specify conditions on the intersection of

edges and vertices, as the conditions on faces cover them also. Thus an improper

intersection of a pair of edges implies an improper intersection of faces. [1]

Figure 1

2. Local topology is “proper”.

The local topology is what the surface looks like in the vicinity of a point.

This notion has been made precise via the notation of “neighborhoods”, i.d.

arbitrarily small portions (open regions) of the surface surrounding a point. We seek to

 48

exclude the three objects shown in Figure 2. In all three examples in that figure, there are

points that have neighborhoods that are not topologically two-dimensional disks. The

technical way to capture the constraint is to require the neighborhoods of every point on

the surface to be “homeomorphic” to a disk. A homeomorphism between two regions

permits stretching and bending, but no tearing. A fly on the surface would find the

neighborhood of every point to be topologically like a disk. A surface for which this is

true for every point is called 2-monifold, a class more general than the boundaries of

polyhedra.

We have expressed the condition geometrically, but it is useful to view it

combinatorially also. Suppose we triangulate the polygonal faces. Then every vertex is

the apex of a number of triangles. Define the link of a vertex v to be a collection of edges

opposite to v in all the triangles incident to v. For a legal triangulated polyhedron, we

require that the link of every vertex is a simple, closed polygonal path. The link for the

cycled vertex in Figure 2 (b), for example, is not such a path. One consequence of this

condition is that every edge is shared by exactly two faces. [4]

3. Global topology is “proper”.

The surface is intended to be connected, closed, and bounded. Thus, it is required

that the surface is connected in the sense that from any point one may walk to any other

on the surface. This can be stated combinatorially by requiring that the 1-skeleton, the

graph of edges and vertices are connected. Note that this excludes, for instance, a cube

with a “floating” internal cubical cavity. Together with stipulating a finite number of

faces, our previous conditions already imply closeness and boundness of these faces,

although this is perhaps not self-evident.

One might be inclined to rule out “holes” in the definition of the polyhedron,

holes in the sense of “channels” from one side of the surface to the other that do not

disconnect the exterior (unlike cavities). The usual terminology is adopted and permit

polyhedra are permitted to have an arbitrary number of such holes. The number of holes

is called the genus of the surface. Normally only polyhedra with genus zero: will bet

considered i.d. hose topologically equivalent to the surface et a sphere.[3]

 49

Figure 2

In summary, the boundary of a polyhedron is a finite collection of planar,

bounded convex polygonal faces such that.

1. the faces intersect properly;

2. the neighborhood of every point is topologically an open disk, or

(equivalently) the link of every vertex is a simple polygonal chain; and

3. the surface is connected, or (equivalently) the 1-skeleton is connected.

The boundary is closed and encloses a bounded region of space. Every edge is shared by

exactly two faces; these faces are called adjacent.

 Convex polyhedra are called polytopes, or sometimes 3-polytopes to emphasize

their three-dimensionality. A polytope is a polyhedron that is convex on that the segment

connecting any two of its points inside. Convex polygons can be characterized by the

local requirement that each vertex be convex, polytopes can be specified locally by

requiring that all dihedral angles be convex(π≤). Dihedral angles are the internal angles

in space at an edge between the planes containing its two incident faces. For any

polytope, the sum of the face angles around each vertex is at most π2 , but this condition

does not alone imply convexity.

 50

3. Euler’s Formula

In 1758 Leonard Euler noticed a remarkable regularity in the numbers of

vertices, edges, and faces of a polyhedron of genus zero: the number of vertices and faces

together is always by two more than the number of edges; and this is true for all

polyhedra. So a cube has 8 vertices and 6 faces, and 8+6=14 is two more than its 12

edges. And the remaining regular polytopes can be seen to satisfy the same relationship.

If we let V, E and F be the number of vertices, edges and faces respectively of a

polyhedron, then, what is now known as Euler’s formula is: V-E+F=2. [1]

Proof of Euler’s Formula is comprised of three parts:

1. Converting the polyhedron surface to a plane graph.

2. The theorem for trees.

3. Proof by induction.

Firstly, the polyhedron is “flattened” on surface P to be a plane, perhaps with

considerable distortion by the following procedure. Imagine the surface is made of a

pliable material. Choose an arbitrary face f of P and remove it, leaving a hole in the

surface. Now stretch the hole wider and wider until it becomes much larger than the

original size of P. It should be intuitively plausible that one can then flatten the surface

onto the plane, resulting in a plane graph G (the 1-skeleton of the polytope): a graph

embedded in the plane without edge crossings, whose nodes derive from vertices of P,

and whose arcs derive from edges of P. The edges of f become the outer boundary of G.

Each face of P except for f becomes a bounded face of G; f becomes the exterior,

unbounded face of G.

Figure 3 The 1-skeleton of a cube, obtained by flattening to a plane

 51

Figure 3 illustrates the graph that results from flattening a cube. Thus if we count

this exterior face of G as a true face (which is the usual convention), then the vertices,

edges, and faces of P are in one-to-one correspondence with those of G. This permits us

to concentrate on proving Euler’s formula for plane graphs.

The second step is to prove the formula in the highly restricted case where G is a

tree. Of course a tree could never result from stretching a polyhedron, but this is a useful

tool for the final step of the proof. So suppose G is a tree of V vertices and E edges. It is a

property of trees that V=E+1, a fact that is assumed for the proof. A tree bounds or

delimits only one face, the exterior face, so F=1. Now Euler’s formula is immediate: V-

E+F=(E+1)-E+1=2.

The third and final step of the proof is by induction on the number of edges.

Suppose Euler’s formula is true for all connected graphs with no more than E-1 edges,

and let G be a graph of V, E, and F vertices, edges, and faces respectively. So suppose G

has a cycle, and let e be an edge of G in some cycle. The graph G'=G\e is connected, with

V vertices, E-1 edges, and (here is the crux) F-1 faces: removal of e must join two faces

into one. By the introduction hypothesis, V-(E-1)+(F-1)=2=V-E+F. [1]

Consequence: Linearity

Euler’s formula implies that the number of vertices, edges, and faces of a

polytope are linearly related: if V=n, then E=O(n) and F=O(n). This will permit to use

“n” rather loosely in complexity analyses involving polyedra.

Because we seek to establish an upper bound on E and F as a function of V=n, it

is safe to triangulate every face of the polytope, for this will only increase E and F

without affecting V. So for the remainder of this argument let it be assumed that all the

faces of the polytope are triangles. If the edges face by face are counted, then 3F is

obtained because each face has three edges. But since each edge is shared by two faces,

this double-counts the edges. So 3F=2E. Now substitution into Euler’s formula

establishes the linear bounds:

 V-E+F=2

V-E+2E/3=2

 52

 V-2=E/3

 E=3V-6<3V=3n=O(n)

 F=2E/3=2V-4<2V=2n=O(n)

Theorem: For a polyhedron with V=n, E, and F vertices, edges, and faces

respectively, V-E+F=2, and both E and F are O(n). [3]

4. Incremental algorithm in two-dimensions

Input: such that no three are collinear; let P be a random

permutation of the input points.

2
1 },...,{ RPP n ⊆

Step 0: Randomly extract 3 points from P and do the following:

a) Form a triangle T.

b) Pick a point c interior to the triangle T.

Step 1: Draw an arc from c to each point in P.

Step 2: Partition the points in P by the edge of T (the triangle) which their arc

crosses (a point is actually marked as dead if it is in the interior of this polygon;

otherwise the point is considered alive).

Step 3: While there is a point above some edge in the current CH do

a) Pick a random point p above, say, edge e.

b) Build-Tent (p, e, Poly)

Output: The convex hull of P.

5. Incremental algorithm in three-dimensions

The overall structure of the three-dimensional incremental algorithm is identical

to that of the two-dimensional version. At the ith iteration, compute

conv (. And again the problem of computing the new hull naturally

divides into two cases. Let p= and Q= . Decide if

←iH)ii pH Υ1−

ip 1−iH Qp∈ . If so, discard p; if not,

compute the cone tangent to Q whose apex is p, and construct the new hull.

 53

The test can be made in the same fashion as two dimensions: p is inside Q if p is

to the positive side of every plane determined by a face of Q. The left-of-triangle test is

based on the volume of the determined tetrahedron, just as the left-of-segment test is

based on the area of triangle. If all faces are oriented consistently, the volumes must all

have the same sign (positive under the conventions considered in this article). This test

can clearly be accomplished in time proportional to the number of faces of Q that is O(n).

Qp∈

 When p is outside Q, the problem becomes more difficult, as the hull will be

altered. Recall that in the two-dimensional incremental algorithm, the alteration required

finding two tangents from p to Q. In three dimensions, there are tangent planes rather

than tangent lines. These planes bound a cone of triangle faces, each of whose apex is p,

and whose base is an edge e of Q. An example is shown in Figures 4 and 5. Figure 4

shows and from one point of view, and Figure 5 shows the same example from

a different viewpoint.

1−iH iH

Figure 4 Viewpoint one: (a) before adding a point in corner 1−iH

(b) after: iH

 54

Figure 5 Viewpoint two : (a) before adding a point in corner 1−iH

(b) after: iH

Imagine staying in point p and looking toward Q. Assuming for the moment than

no faces are viewed edge-on, the interior of each face of Q is either visible or not visible

from p. It should be clear that the visible faces are precisely those that are to be discarded

in moving from Q= to . Moreover, the edges on the border of the visible region

are precisely those that become the bases of cone faces apexed at p. Suppose e is an edge

of Q such that the plane determined by e and p is tangent to Q.

1−iH iH

6. Implementation remarks:

The application is written in C. To memorize the information about faces, edges and

vertex three structures are used. At the beginning it has two options are given. Example:

Cube and Random points. If is the first option chosen is created the convex hull of the

following points:

0 0 0

0 50 0

50 50 0

50 0 0

 55

0 0 50

0 50 50

50 50 50

50 0 50

 These points represent indeed the coordinates of the vertex of a cube.

 If the second option is chosen the application asks for a number of points. For

each point it will generate aleatory the three coordinates (between 0 and 50) and then it

will pass to form the convex hull for them.

 The resulted drawing can be seen using different projection formulas and the three

axes: OX, OY, OZ.

7. Experimental results:

 56

8. Conclusions and future work

The algorithm presented is one of the most quickly algorithms O(n2). An

algorithm which is better has O(n logn) and is based on the divide-and-conquer method (

Preparata and Hong in 1977). A challenge is to make a convex hull in four dimensions

where the fourth dimension can be time, or in more dimensions. E.g.: The key sartorial

characteristic of a person could be represented by height, sleeve length, inseam length,

neck and waist circumferences. Then each person could be viewed as a point in a five-

dimensional space: height, arm, leg, neck, waist.

9. Acknowledgements

I want to express my thanks to all the teachers that guided me along the

time (from general school to faculty) but especially to my teacher of informatics

from high school, Mrs. Dobre Carmen and to my Professor of computational

geometry, Mrs. Mihaela Sterpu, which guided and helped me in making this

article.

 57

10. References

[1] F. P. Preparata and S. J. Hong, “Convex hulls of finite sets of points in two and three

dimensions,” Communications of the ACM, vol. 20, pp. 87-93, 1977.

[2] Nancy Amato (Texas A&M Department of Computer Science)

http://parasol.tamu.edu/~amato/Courses/620/ Scribe/Intro/ConvexHulls.ppt

[3] O. Devillers and M. Golin. Incremental Algorithms for Finding the Convex Hulls of

Circles and the Lower Envelopes of Parabolas. Inform. Process. Lett., 56(3):157--164,

1995. http://www-sop.inria.fr/prisme/publis/dg-iafch-95.ps.gz

[4] Scot Drysdale: Notes for lecture 7: Convexity

http://cm.bell-labs.com/who/clarkson/cis677/lecture/7/

Dobrin Mihai, student in the 3rd year at the Faculty of

Mathematics and Computer Science, Department of Computer

Science, University of Craiova. Recently, I was appointed junior

member at the Research Center for Artificial Intelligence (RCAI).

My hobbies are: computer (especially programming), beekeeping,

classical music. At this moment I am working on a program for topography at a firm in

Craiova. I spend my spare time as a a scout at the Rabon-Cfr group or… between the

bees…beekeeping them!…

 58

http://parasol.tamu.edu/~amato/Courses/620/ Scribe/Intro/ConvexHulls.ppt
http://www-sop.inria.fr/prisme/publis/dg-iafch-95.ps.gz
http://cm.bell-labs.com/who/clarkson/cis677/lecture/7/

	A graphical approach to Lindenmayer systems
	Admission decisions for candidates to a competition through Minsky frames
	A method to compute the last non zero digit of n!
	The Rummy Game
	An application to Knowledge Representation and Processing Systems
	Convex Hulls in Three Dimensions

