
Planar Minimum�Weight Triangulations

Jesper Jansson

November ����

Abstract

The classic problem of �nding a minimum�weight triangulation for a given planar straight�line
graph is considered in this paper� A brief overview of known methods is given in addition to some
new results� A parallel greedy triangulation algorithm is presented along with experimental data
that suggest a logarithmic relationship between the number of input vertices and its running time
in the average case� Next� some new graph�based algorithms for parallel dynamic programming
for simple polygons are described and analyzed� They are combined into a general algorithm that
can be employed when the number of available processors is anywhere between O�n�� log�n�� and
O�n�� log�n�� to reach running times that vary from O�n log�n�� to O�log�n���� where n denotes
the number of vertices that the polygons contain� As a side e�ect� a method for constructing the
greedy triangulation of simple polygons with O�n����� log�n��� processors in O�n���� log�n�� time is
obtained� Finally� an ��n� lower bound for the nonoptimality of the MST�triangulation heuristic
and an ��

p
n� lower bound for the nonoptimality of the GST�triangulation heuristic are proved�

Sammanfattning

Det klassiska problemet att hitta en triangulering av minimal l�ngd f�r en given plan�r graf
representerad med r�ta linjer behandlas i denna uppsats� En kort �versikt �ver k�nda metoder
samt n	gra nya resultat presenteras� En parallell� girig trianguleringsalgoritm presenteras tillsam�
mans med experimentell data som antyder ett logaritmiskt f�rh	llande mellan antalet givna punkter
och dess k�rtid i medelfallet� D�refter beskrivs och analyseras n	gra nya grafbaserade algoritmer f�r
parallell dynamisk programmering f�r enkla polygoner� De kombineras i en generell algoritm som
kan nyttjas d	 antalet tillg�ngliga processorer be�nner sig mellan O�n�� log�n�� och O�n�� log�n��
f�r att uppn	 k�rtider som varierar fr	n O�n log�n�� till O�log�n���� d�r n anger antalet h�rn som
polygonerna inneh	ller� Som en sidoe�ekt erh	lls en metod f�r att konstruera den giriga triangu�
leringen f�r enkla polygoner med O�n����� log�n��� processorer i O�n���� log�n�� tid� Avslutningsvis
bevisas en ��n� undre gr�ns f�r icke�optimaliteten av MST�trianguleringsheuristiken och en ��

p
n�

undre gr�ns f�r icke�optimaliteten av GST�trianguleringsheuristiken�

Acknowledgments

This paper is my thesis for a Master of Science degree in Computer Science and Technology�
I would like to thank my advisor Christos Levcopoulos for all his help and patience
 many of the
ideas in here originated from him� I am also very grateful to Jens Pommer for proofreading an
earlier version of this paper� Finally� I thank Jan �berg for lending me his LATEX manual�

Contents

� Introduction �

� Terminology �

� Finding good triangulations �
�� Combinatorial analysis �
��� Dynamic programming �
��� Heuristics �

���� The greedy triangulation �
����� The Delaunay triangulation �
����� Implementations of the greedy and Delaunay triangulations � � � � � � � � � � �
����� Performance of the greedy and Delaunay triangulations � � � � � � � � � � � � �
����� Subgraph�based heuristics �

� Parallel greedy triangulation ��
�� Concepts �

��� Model of computation �
���� Parallel complexity �

��� A parallel greedy triangulation algorithm ��
���� Average number of generations needed to complete � � � � � � � � � � � � � � � ��
����� Average number of greedy edges in di�erent generations � � � � � � � � � � � � ��

� Parallel dynamic programming for simple polygons ��
�� O�n�� log�n�� processors� O�n log�n�� time ��
��� O�n�� processors� O�log�n��� time ��
��� O�n�� log�n�� processors� O�log�n��� time ��
��� O�n����� log�n�� processors� O�n���� log�n�� time ��
��� General algorithm ��
��� Conclusion ��
��� Generalization ��

A Lower bounds for the nonoptimality of the MST� and GST�triangulations ��
A� An ��n� lower bound for the nonoptimality of the MST�triangulation � � � � � � � � ��
A�� An ��

p
n� lower bound for the nonoptimality of the GST�triangulation � � � � � � � ��

Bibliography ��

Chapter �

Introduction

�Geometry is not about squares�

It�s about triangles and stu���

� Beavis and Butt�Head� Washing the Dog

Many problems in computational geometry involve decomposing a speci�ed geometric object into
simpler geometric objects� One way to do this is by covering it with primitive components that
are allowed to overlap� Another possibility is to partition the given object into distinct� nonover�
lapping components� The most basic partitioning of a set of planar points and line segments is
the triangulation � which divides the region inside the boundary into triangles� This can be done
in many di�erent ways for most sets� and some triangulations have properties that are better than
those of others�

Triangulations are used by a wide range of applications as a substep in solving a presented prob�
lem� Some examples� which all depend on e�cient triangulation algorithms� are numerical surface
interpolation� the �nite�element method� Kirkpatrick�s solution to the point location problem�
Lee�Preparata�s shortest path algorithm for simple polygons� and creating �triangleplasma� in
computer graphics�

This paper is focused on planar triangulations� as seen from an algorithmic point of view�
Chapter � provides the basic de�nitions that are used in the rest of the paper and establishes

some simple theorems that come in handy later on�
Chapter � attempts to convince the reader that it is not a good idea to generate all di�erent

possible triangulations for a given problem and then select the most suitable one because of the
enormous combinatorial explosion that occurs when the number of vertices in the graph grows
large� It is shown how dynamic programming can be applied to the minimum�weight triangulation
problem for simple polygons to �nd an optimal solution in polynomial time �a well�known result��
and famous heuristic methods that approximate the best solution for arbitrary sets of vertices are
discussed�

Chapter � looks into how the greedy triangulation heuristic can be implemented using a parallel
processor model of computation� The rest of the chapter presents the results obtained from a large
number of simulations that were performed to study certain aspects of the algorithm�s behavior
�as suggested by Christos Levcopoulos�� The results imply that there is a logarithmic relationship
between the number of input vertices and its running time in the average case�

Chapter � introduces some new dynamic programming algorithms for solving the MWT problem
with parallel processors �originally invented by Christos Levcopoulos� but never published�� These
methods are then combined into a general algorithm whose running time varies between O�n log�n��
and O�log�n���� depending on the number of available processors� where n is the number of vertices
in the given polygons� The algorithms can be modi�ed to handle other types of triangulations �like
the greedy triangulation� for instance��

Finally� the appendix contains a detailed description of how point sets can be constructed so that
if they are triangulated by two of the subgraph�based heuristic methods introduced in Chapter �
�the MST� and GST�triangulations� to be speci�c�� the results are not optimal in the MWT sense�

�

Chapter �

Terminology

A number of concepts and de�nitions will be introduced here� The de�nitions were collected from
the sources listed in the bibliography�

A point in E� �the two�dimensional Euclidean space� can be represented by a pair of real
numbers �x�� x��� Given two di�erent points a � �a�� a�� and b � �b�� b��� the linear combination
�a� �� � ��b �� � R and � � � � �� describes the straight line segment between a and b� The
length of the line segment �a�b� is de�ned as d�a�b� �

p
�a� � b��� � �a� � b��� �the Euclidean

distance between a and b��
Let R be a subset of E� bounded by a closed curve� If R is open� i�e� doesn�t contain any points

of its boundary� R is called a region� R is convex if all points on the line segment �a�b� belong to
R for any two points a and b � R� �Otherwise� R is nonconvex�� The boundary of the smallest
convex subset which contains a set of points S in E� is called the convex hull of S�

Graphs can be viewed as special combinatorial objects that can be represented geometrically�
If the undirected graph G � �V�E�� where V is a set of vertices �sometimes referred to as nodes�
and E a set of open edges between pairs of di�erent elements in V and whose insides are disjoint
from V � can be embedded in E� so that no two images of edges intersect� then G is said to be
planar� Every vertex is mapped to a point in the plane and every edge is mapped to a simple curve
between its two corresponding endpoints� Any planar graph of the type described above can be
represented in the plane by an embedding in which all images of edges are straight line segments
�this was �rst shown by F�ry in ����� Such a representation is known as a planar straight�line

graph �abbreviated PSLG�� See Figure �� for an example�
Let G � �V�E� be a PSLG� If E � fg and V �� fg then G is a planar point set� If G consists

of a single cycle� it is a polygon� In a polygon� every edge is connected to exactly one other edge
at each endpoint� No subset of edges may have this property
 in other words� polygons can�t have
holes� The number of edges and vertices in a polygon are always equal� so a polygon can�t contain
isolated vertices either� As an example� a triangle is a polygon with three vertices and three edges�
Finally� a polygon is called simple if no pair of nonconsecutive edges share a common point�

Figure ��� An example of a PSLG�

�

ZZ

(i) (j) (k) (l)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure ���� Adding nonintersecting diagonals to �a� results in a total� constrained triangulation �l��
If the diagonal labelled ZZ was speci�ed as illegal� then �k� is a triangulation since no more diagonals
can be added�

The term �polygon� can be used to refer to the boundary �a curve� that separates the plane into
two regions as well as to the boundary along with its interior region� We will use the term perimeter

in this paper when we want to refer to just the boundary de�ning a polygon�
A diagonal of G is an open straight line segment with endpoints in V that doesn�t intersect any

edges from E nor contain any points belonging to V �
A triangulation of G is a PSLG �V�E�E��� where E� is de�ned as a maximal set of noncrossing

diagonals of G� By joining the vertices of G with nonintersecting diagonals until every region inside
the convex hull of G is bounded by an empty triangle �whose sides are edges or diagonals�� a total

triangulation is obtained� If G is a nonconvex polygon� diagonals on G�s convex hull are considered
illegal� which makes it impossible to construct a total triangulation of G� If E �� fg to start with� a
triangulation is called a constrained triangulation and E its set of constraining edges� The process
of constructing a triangulation of G is known as triangulating G� Figure ��� shows an example�

In Steiner triangulations� extra vertices �called Steiner vertices or Steiner points� as one might
expect� can be added too� This is necessary if a triangulation with nonobtuse triangles is required
for any given PSLG� for example� A constrained Steiner triangulation is a conforming triangulation�
However� these special types of triangulations will not be discussed any further from here on�

By summing up the lengths of the edges in a triangulation T of a PSLG G� we get the weight

of T �written as jT j�� A minimum�weight triangulation �MWT in short� of G is any triangulation
T with jT j as small as possible� If T is a unique MWT of G� it can be denoted by MWT �G�� The
expression jMWT �G�j is well�de�ned even if G has more than one MWT since all MWTs of G have
the same value�

�

Some results that will be used in subsequent chapters follow� We assume that m � � and n � ��

Lemma �	�
Euler�s Formula�
For any connected PSLG with v vertices� e edges� and r regions �the single outer in�nite region
included�� the relation v � e� r � 	 always holds�

Proof
See Grimaldi �� � �

Theorem �	�
Let G be a PSLG with n vertices and let m be the number of vertices that lie on the convex hull
of G� A total triangulation of G partitions G into 	n�m � 	 triangles�

Proof
The proof is by induction on m and n�

First of all� for m � � and n � �� 	n � m � 	 is equal to � This is correct since this case
corresponds to a single triangle� It is marked s in Figure ����

Next� assume that the relation is true for m � � and n � k� Then there are 	k� �� 	 triangles
in a total triangulation of G� If we add a vertex to the inside of G�s convex hull� m is still equal
to � but n is increased to k � �� By drawing three new diagonals� a total triangulation of the
resulting PSLG is obtained� See Figure ��� �a�� One triangle is thus split into three smaller ones�
so the total number of triangles increases by two� The total number of triangles is now equal to
	k � �� 	 � 	 � 	�k � ���
 � 	�k � ��� �� 	� This proves all of the transitions represented by
right arrows in Figure ����

Finally� assume that theorem is true for m � j and n � k� i�e� that a total triangulation of
G contains 	k � j � 	 triangles� Place a new vertex somewhere outside the convex hull of G so
that it doesn�t force any old vertices on G�s convex hull o� the resulting convex hull� The new
PSLG has m � j � � and n � k � �� A total triangulation is acquired by drawing two new
diagonals as in Figure ��� �b�� One new triangle is obtained� so the total number of triangles is
	k � j � 	 � � � 	�k � ��� �j � ��� 	� This proves the rest of the transitions in Figure ����

By the principle of mathematical induction� the proof for Theorem ��� is complete� �

X
X
X
X
X
X X

X
X
X
X
X X

X X X X
XXX

X
X
X X

X
X

n

m

s

1

2

3

4

5

6

1 2 3 4 5 6

Figure ���� The induction proof for Theorem ��� starts out by showing that the theorem is valid
for m � � and n � �� Next� the transitions from m � � and n � k to m � � and n � k � � �right
arrows in the picture� are proved� Finally the remaining transitions �from m � j and n � k to
m � j � � and n � k � �� are taken care of� Thus� all cases �n � m � �� are covered�

�

w

(a) (b)

Figure ���� �a� A new vertex w is added to the inside of G�s convex hull� Drawing diagonals
from w to the three corners of the triangle in which w was placed gives us a total triangulation�
�b� A new vertex is added so that the number of points on the convex hull is increased by one�
A total triangulation is obtained by drawing two diagonals on the convex hull�

Figure ���� An example� The PSLG contains � vertices� � of which are located on the convex hull�
Since n � � and m � �� there have to be � triangles and � edges in a total triangulation�

Theorem �	�
Let G be a PSLG with n vertices and let m be the number of vertices that lie on the convex hull
of G� Then the number of edges in a total triangulation of G is equal to �n�m � ��

Proof
Set v � n and r � 	n�m � 	 � � in Lemma ��� Now� e � �n�m � �� �

The minimum possible value of m is �� so we have�

Corollary �	�
A triangulation of a given PSLG with n vertices contains at most �n� edges� �

Refer to Figure ��� for an example of how Theorem ��� and Theorem ��� can be applied�

�

AB

D
E

C

AB

D

F

H

E

GC

I

H

G

F

I

Figure ���� A triangulated nonconvex polygon is deformed into a triangulated convex polygon�

Theorem �	�
A triangulated polygon with n vertices always contains n� 	 triangles�

Proof
A triangulation of a convex polygon is necessarily total since every region inside the convex hull
is bounded by a triangle� Furthermore� m � n for all convex polygons� so Theorem ��� implies
that any triangulated convex polygon always consists of n� 	 triangles� A triangulated nonconvex
polygon can be continuously deformed into a triangulated convex polygon without having to change
any of the diagonals� endpoints� See Figure ���� The resulting triangulation contains the same num�
ber of triangles as the original triangulation� Thus� any triangulation of a polygon with n vertices
consists of n� 	 triangles� �

�

�

Chapter �

Finding good triangulations

��� Combinatorial analysis

Depending on the criteria used to identify �good� and �bad� triangulations� searching for optimal
triangulations can involve minimizing the lengths of the selected diagonals �locally or the total length
of all diagonals�� maximizing!minimizing the minimum!maximum induced angle� minimizing the
number of obtuse angles� etc� In some cases� the data values associated with the vertices �along
with their locations� can determine if one triangulation is better than another� Data dependent
criteria arise in certain numerical interpolation methods�

The most straightforward way to �nd an optimal triangulation �there might be more than one"�
for a given problem would be to generate all possible triangulations and then compare them to each
other� This is feasible for PSLGs with few vertices� but when n grows large� the number of di�erent
triangulations grows even faster�

To illustrate� let P be a convex polygon with n vertices and tn the number of di�erent triangu�
lations it admits� ti for i � �� ��
� are displayed in Figure ���

n = 3

n = 4

n = 5

n = 6

Figure ��� If n � �� P is already a triangle� so t	 � �� For n � �� there are two possibilities� which
means t� � 	� When n �
� there are �ve ways to triangulate P � and so t� �
� Similarly� t� � ���

�

t 3 t n-1 t 4 t n-2 t 5 t n-3t n1 + + + +

n-2n n-1 n-3

5

3

4

t n-1 t 3 t n 1

n-1 n

3

+ +...

Figure ���� Fix one point and let it belong to di�erent triangles that cut the polygon into smaller
polygons� By counting all the di�erent triangulations for the resulting polygons and then adding
them together� we get tn
��

Assume that we know ti for � � i � n� What is the value of tn
�#

To count the number of ways in which a convex polygon with n�� vertices can be triangulated� we
can look at how many possible triangulations there are for di�erent parts of the original polygon
and combine the results according to Figure ����

This gives us
tn
� � �� tn � t	tn�� � t�tn�� � � � � � tn��t	 � tn��

De�ne t� � ��
Then

tn
� � t�tn � t	tn�� � t�tn�� � � � � � tn��t	 � tnt�

Solving this relation by the method hinted at in Problem ��� in �� yields

tn
� �
�

	 �	n� ��

�
	n
n

�

This can be rewritten as

tn �
�

	 �	n� ��

�
	n� 	
n� �

�
�

�

	 �	n� ��
� �	n� 	��

�n� ��� �n� ���
�

�	n� ���

�n � 	�� �n� ���

Expanding tn� we get

tn �
�	n� ���

�n� 	�� �n� ���
�

�	n� �� �	n�
� �	n� �� 	

�n � �� �n� 	� �n� ��� �n� 	�� 	

which� when simpli�ed into a recurrence relation� becomes

tn �
	 �	n�
�

�n � ��
tn�� ����

�

Theorem �	�

tn �
n��Y
j��

�� �
� �j � ��

j � �
�

for n � ��

Proof
Base step� t� � � � �� �	 � 	�
Now assume that tn�� �

Qn��
j�� �� � � j
�j
	��

This� along with ����� yields

tn �
	 �	n�
�

n� �
tn�� �

�n� ��

n� �

n��Y
j��

�� � �
j � �

j � �
� � �� � �

n� �

n� �
�
n��Y
j��

�� � �
j � �

j � �
� �

n��Y
j��

�� � �
j � �

j � �
�

By the principle of mathematical induction� the proof is complete� �

Examining tn� we now see that

tn �
n��Y
j��

�� � �
j � �

j � �
� �

n��Y
j��

�� � �� �
�
� �

n��Y
j��

	 � 	n�	

The number of ways to triangulate a convex polygon grows exponentially with n�
In the more general case �a set of n vertices in E��� an upper bound of ���	n on the number of

triangulations has been found by Ajtai� Chv�tal� Newborn� and Szemer$di � � What all this adds
up to is that it is not practical to produce all the di�erent triangulations and compare them to �nd
the best one� Instead� people try to invent e�cient algorithms that exploit geometric properties
in clever ways so that optimal �or close to optimal� solutions can be discovered without having to
check all possible alternatives�

��� Dynamic programming

Dynamic programming is a useful problem�solving method that combines solutions to subproblems
systematically� When an encountered problem consists of subproblems that share certain sub�
subproblems �i�e� the subproblems are not independent�� the normal divide�and�conquer approach
would repeatedly solve the same subsubproblems over and over� wasting time and resources� The
dynamic programming method� however� would perform the necessary calculations once for each
subsubproblem and store the answers in a table� Subsequently� the work needed to solve each such
subsubproblem would already have been done�

Dynamic programming can be applied to many discrete optimization problems with optimal
substructure� If an optimal solution to a given problem includes optimal solutions to its subprob�
lems and the subproblems overlap� it might be a good idea to construct a dynamic programming
algorithm�

As an example� consider the problem of �nding a minimum�weight triangulation for a sim�
ple polygon �convex or nonconvex� with n vertices� It is easy to see that an optimal triangula�
tion T of a simple polygon P � �v�� v�� � � � � vn��� containing the diagonal d � �v�� vk� for some
k� � � k � n � �� must consist of the minimal triangulations of P� � �v�� v�� � � � � vk� and
P� � �v�� vk� vk
�� � � � � vn���� �If Pj � j � � or �� is not optimally triangulated� the weight of Pj�s
triangulation can be decreased� But this means that T is not optimal since the weight of T can be
made less by using this triangulation of Pj instead�� A degenerate polygon �vi� vi
�� is considered
to have an optimal triangulation with weight j�vi� vi
��j�

g

i

i+1

i+2

j-1

j

Figure ���� g is an edge of P � and one side of a separating triangle�

Let t�i� j� be the total length of all edges belonging to an optimal triangulation for the subpolygon
P � � �vi� vi
�� � � � � vj�� �vi� vj� � g is the only edge of P � that might not be an edge of P � If g crosses
any of the edges �vk� vk
�� where i � k � j � �� P � is not a simple polygon� and t�i� j� is set to 	�
Otherwise� g must be one side of a triangle that further divides P � into two optimal �and possibly
degenerate� subpolygons� See Figure ���� In this case�

t�i� j� �� j�vi� vj�j� min
i�k�j

�t�i� k� � t�k� j��� �����

Note that t�i� i� �� � j�vi� vi
��j�
The following algorithm calculates the minimum�weight triangulation for a simple polygon by

using recurrence relation ������ The values of t�i� j� are computed and stored in a table called t�

FOR i��� TO �n��� DO

t	i
i�� MOD n����v�i
v��i�� MOD n��

FOR l��� TO n DO

FOR i��� TO n�l DO

j��i�l��

k��i��

cross��False

REPEAT

cross��Intersecting��v�i
v�j�
�v�k
v��k�����

k��k��

UNTIL cross OR k�j��

t	i
j���INFINITY

S	i
j�����

IF NOT cross THEN

FOR k��i�� TO j�� DO

q���v�i
v�j��t	i
k��t	k
j�

IF q � t	i
j� THEN

t	i
j���q

S	i
j���k

The REPEAT�loop checks if �vi� vj� crosses the boundary of P � in which case t�i� j� �% 	�
�See Chapter ��� for details on how the segment intersection test can be implemented�� The k that
is selected to obtain each optimal t�i� j� is stored in S �an auxiliary table�� This way� an optimal
triangulation can be traced afterwards�

The algorithm�s nested loop structure gives it a running time of O�n	�� The amount of memory
needed is O�n�� because of the t and S tables�

�

Other optimal triangulation problems can be solved by modifying the algorithm� But dynamic
programming is not always the most e�cient method� For instance� the min�max angle problem
��nd a triangulation that minimizes the largest angle in all of its triangles� for a simple polygon
can be solved by dynamic programming in O�n	� time and O�n�� space� Tan showed in ��� how
this problem can be solved in O�n� log�n�� time and O�n� space by using edge insertion techniques�

There are other interesting problems that can be solved by dynamic programming and whose
structures are identical to the one described above� Two famous examples are computing the
optimal order of matrix multiplications �the number of required operations can be minimized since
matrix multiplication is associative� and the construction of optimal binary search trees� Although
these problems might seem totally unrelated� they can all be described by relation ������ Solving
any one of these problems often means that the others can be solved with similar methods� The
matrix multiplication problem� for example� can therefore be solved in O�n	� time and O�n�� space
by dynamic programming�

��� Heuristics

For some di�cult problems such as �nding the MWT of an arbitrary PSLG� no polynomial�time
methods have yet been found� However� if some sacri�ces in performance are made� we can ob�
tain powerful heuristic techniques that yield triangulations that are close to optimal and run in
polynomial time�

Two popular and simple heuristics for the MWT problem are the greedy triangulation and the
Delaunay triangulation� Sometimes more complicated� subgraph�based methods are employed to
�nd slightly better solutions�

����� The greedy triangulation

Greedy algorithms can be employed in optimization problems that consist of a sequence of steps�
where each step involves making a selection from a set of choices� A greedy algorithm makes a
locally optimal choice in every step� never undoing what it has done before�

The greedy triangulation algorithm starts out with the set of edges and the set of vertices
originally in a given PSLG G� In each step� it then inserts the shortest compatible diagonal
between nodes in G until no more diagonals can be added� �A compatible diagonal is one that
does not intersect any of the previously generated ones or any of the original edges�� The resulting
triangulation is denoted by GT �G�� Figure ��� shows an example� If two or more distances between
pairs of points in G are exactly the same� GT �G� is not necessarily unique�

GT(G)

G

Figure ���� G� shortest compatible diagonal repeatedly added� and GT �G��

�

Figure ���� A set of points and its Voronoi diagram�

Figure ���� The straight�line dual of the Voronoi diagram results in DT �S�� Observe that a Voronoi
edge and its dual line segment don�t actually have to intersect�

����� The Delaunay triangulation

The Delaunay triangulation method is an extensively studied heuristic which has been shown to
possess lots of good properties� For example� compared to all triangulations of a given PSLG� the
Delaunay triangulation is the one that maximizes the minimum angle of all induced triangles�

Given a PSLG G� its Delaunay triangulation DT �G� is obtained by taking the straight�line dual
of its Voronoi diagram� If S is a set of n points in the plane� the Voronoi diagram of S is a partition
of the plane into n distinct convex regions� Each region is associated with one point pi in S� and
consists of the locus of points closer to pi than to any other point in S� Obviously� the Voronoi
diagram contains information about point proximity� Refer to Figure ��� for an example�

By drawing line segments between each pair of points in S whose Voronoi regions share an
edge and adding the points in S� we get the straight�line dual graph DT �S�� An example is given
in Figure ���� If no four points of the original set S are cocircular �the nondegenerate case��
this graph is in fact a triangulation of S� Examining adjacent Voronoi regions� one can see that
every vertex of the Voronoi diagram is the common intersection of exactly three Voronoi edges and
corresponds to one triangle in DT �S�� A detailed proof of why DT �S� is a triangulation is presented
in ��� and will not be given here�

�

Figure ���� An example of a degenerate set of points �all four points lie on the same circle��

In the degenerate case� auxiliary segments have to be added to the straight�line dual to make a
triangulation� See Figure ����

If the given PSLG contains edges as well as vertices� the concept of Voronoi diagrams has to
be generalized to Voronoi diagrams with barriers� In �� � V orb�G� for a given PSLG G �� �V�E��
is de�ned as the minimal set of straight�line segments and half�lines that complements G to the
partition of the plane into regions P �v�� v � V � �For any v � V � the region P �v� consists of all
points p in the plane for which the shortest� open straight�line segment between p and a vertex of
G that does not intersect any edge of G is the distance between p and v��

If a metric other than the conventional Euclidean �L�� one is used� the Voronoi diagram is not
always unique� Historically� this lead to the development of a more general de�nition of the Delaunay
triangulation based on the fact that the circumcircle of each Delaunay triangle never contains any
vertices in its interior� But since the Euclidean metric is employed in most applications� the simple
de�nition based on the relationship between Voronoi diagrams and their straight�line duals is often
used�

����� Implementations of the greedy and Delaunay triangulations

An obvious way to implement the greedy triangulation heuristic is by generating all diagonals
between points in G� sorting them by increasing lengths� and then testing one diagonal at a time�

In a PSLG with n vertices� there are
�
n
�

�
pairs� so this method requires O�n�� space� The running

time is
T �n� � O�n� log�n�� � O�n�����n� �O�n����n�

where O�n� log�n�� is the time it takes to sort the diagonal lengths� ��n� the time required to test a
new diagonal for compatibility� and ��n� the time required to update the data structure whenever
a diagonal is added� A naive compatibility test �check every new potential diagonal against the
O�n� many edges and diagonals currently in the triangulation� would give us ��n� � O�n� and
therefore T �n� � O�n	�� Gilbert �� came up with a more e�cient edge test that uses segment
trees� obtaining ��n� � O�log�n�� and ��n� � O�n log�n��� and thus T �n� � O�n� log�n���

To get bounds lower than these� there are ways to generate compatible diagonals only� Lingas ���
�and independently Goldman �� � invented O�n� space implementations that utilize Voronoi dia�
grams with barriers� Levcopoulos and Lingas later found an O�n�� time and O�n� space method by
performing the update step in O�n� time �� � Also in �� � a linear time algorithm for producing
the greedy triangulation of convex polygons was presented� Since then� Levcopoulos and Lingas
have improved the total expected running time to O�n� for a set of points distributed uniformly
in a square �� � Recently� Dickerson� Drysdale� McElfresh and Welzl published some practical
algorithms in �� for greedy triangulations that aren�t as good asymptotically in the worst case� but
that work for general convex regions �not just squares and rectangles� and are easier to implement�

�

The Delaunay triangulation of G can be obtained from the corresponding Voronoi diagram
with barriers in O�n� time� According to Wang and Schubert �� � V orb�G� can be constructed in
O�n log�n�� time and linear space� so DT �G� can be found in O�n log�n�� � O�n� � O�n log�n��
time and O�n� space�

Levcopoulos and Krznaric �� have shown how GT �S� can be calculated from DT �S� in linear
time� where S is a given set of planar points� Hence� they get an O�n log�n���O�n� � O�n log�n��
time algorithm for computing the greedy triangulation of planar point sets� For applications where
the Voronoi diagram has to be constructed anyway� their approach is especially useful�

����� Performance of the greedy and Delaunay triangulations

Neither the greedy triangulation heuristic nor the Delaunay triangulation heuristic produce trian�
gulations that are guaranteed to be optimal in the MWT sense� See Figure ��� for two classic
examples� In fact� for a given planar point set S� jGT �S�j � ��

p
n� jMWT �S�j �see �� � and

jDT �S�j � ��n� jMWT �S�j �see ��� ��
However� for convex polygons� the weight of a greedy triangulation is always within a constant

factor of the weight of a corresponding MWT �� �

S1

S2

S1 S1

S2 S2

GT() MWT()

DT() MWT()

Figure ���� GT �S� and DT �S� are not always optimal�

�

����� Subgraph�based heuristics

As mentioned above� there exist other� more devious heuristics for the MWT problem� Subgraph�
based heuristics divide an input PSLG into simple polygons which are then triangulated in polyno�
mial time� e�g� by dynamic programming� The di�cult part is �nding diagonals in polynomial time
that belong to the optimal solution and that separate the PSLG into simple polygons� However� it
is not so hard to �nd and use interior diagonals that have a good chance of being part of the optimal
solution together with the missing pieces of the convex hull� Some subgraph�based methods use the
greedy triangulation or the Delaunay triangulation as a substep for this purpose�

The heuristics below assume that the given PSLG is a planar point set�

MST�triangulation

Let S be a planar point set with n vertices� TMST �S� is the triangulation obtained by

 Computing the Delaunay triangulation of S

 Using the edges in DT �S� to construct a minimum�spanning tree MST �S� for S �edges
belonging to the convex hull of S are considered to have cost ��

 Augmenting it with the rest of the convex hull of S

 Triangulating the resulting polygons optimally

The method relies on the fact that MST �S� � DT �S� �see ��� ��

Sometimes �polygons� that look like the one in Figure ��� have to be triangulated in the last
step� The dynamic programming algorithm from Section ��� can be used after a small modi�cation�
represent vertex X as two di�erent vertices with the same coordinates� Even after adding new
vertices� there will never be more than twice the number of original vertices� Thus� the time
complexity is still O�n	�� It can�t be lower than this
 in the worst case� only one polygon is created�
See Figure ����

Lingas proved in �� that TMST �S� is at least as good as DT �S�� and that jTMST �S�j is
within a factor of O�log�n�� from jMWT �S�j with high probability for a uniformly distributed
set of points� But for every n � �� there exists a planar point set S with n vertices such that
jTMST �S�j � jMWT �S�j � ��n�� This is illustrated in Appendix A��

X

Figure ���� Figures such as this one might arise when the MST�triangulation method is applied�

�

Figure ���� If the points lie distributed on a convex shape like in this example� a single polygon
containing all of the n vertices is created by the MST�triangulation heuristic and then optimally
triangulated�

GST�triangulation

Let S be a planar point set with n vertices� TGST �S� is the triangulation obtained by

 Computing the greedy triangulation of S

 Using only edges in GT �S� to construct a spanning tree for S of shortest possible length
�edges belonging to the convex hull of S are considered to have cost ��

 Augmenting it with the rest of the convex hull of S

 Triangulating the resulting polygons optimally

By using dynamic programming in the last step� an O�n	� implementation is obtainable�

Heath and Pemmaraju �� showed that TGST �S� is at least as good as GT �S�� However� for
every n � ��� there exists a planar point set S with n vertices such that jTGST �S�j � jMWT �S�j �
��
p
n�� This is shown in Appendix A���

Plaisted � Hong�triangulation

Plaisted and Hong developed a complex method in ��� that initially computes a graph �a set of
�stars� from each point in a given set S� which is then modi�ed by replacing crossed edges according
to special rules so that a number of convex polygons are produced� A ring heuristic is employed to
triangulate each of the induced polygons� The result turns out to be a solution whose total edge
length is within a factor of O�log�n�� of jMWT �S�j� Smith implemented the heuristic in ��� to
run in O�n� log�n�� time�

�

Chapter �

Parallel greedy triangulation

��� Concepts

����� Model of computation

A parallel random�access machine �PRAM� is a model of computation in which p ordinary proces�
sors P�� P�� � � � � Pp�� �with local memories and registers� share a global memory� All processors
can perform logical and arithmetic operations or read from or write to di�erent parts of the global
memory simultaneously� We will assume that a memory access takes one time unit�

PRAM algorithms can be divided into four categories�

 EREW �Exclusive Read and Exclusive Write�

 CREW �Concurrent Read and Exclusive Write�

 ERCW �Exclusive Read and Concurrent Write�

 CRCW �Concurrent Read and Concurrent Write�

The common�CRCW model �in which several processors wanting to write to the same memory
address have to write the same value� will be used in this chapter�

The parallel instruction FOR x��� TO s
 in parallel
 DO instruction�x� assigns one pro�
cessor to each x and executes instruction�x� for every x at the same time�

����� Parallel complexity

An NC�algorithm is an algorithm that runs in polylogarithmic �logO��� time and uses a polynomial
number of processors� The set of problems that can be solved by NC�algorithms is called NC�

Some problems are P�complete� What this means is that they are solvable in polynomial time�
and have an interesting property� all other problems solvable in polynomial time can be reduced to
one of them in polylogarithmic time by using a polynomial number of processors� Thus� showing

GLOBAL MEMORY

P P P
0 1 2

. . .
p-1

P

Figure ��� The PRAM model�

�

that a P�complete problem can be solved by an NC�algorithm would prove that NC % the complexity
class P �the set of problems solvable in polynomial time�� This is probably not true� however� and
P�complete problems are generally considered to be more complex than those belonging to NC�

Levcopoulos� Lingas� and Wang proved in �� that constructing the greedy triangulation of a
�nite set of planar points with integer coordinates is a P�complete problem�

��� A parallel greedy triangulation algorithm

Given a PSLG G consisting of n vertices� the greedy triangulation can be produced by O�n�� parallel
processors in O�n� time� This is accomplished by assigning one processor to each pair of possible

line segments between two vertices in G �in reality there are only
n�n���

� �n�n���
� ��

� � O�n�� such

pairs� but we might as well use n�n��
�

n�n��
� � O�n�� processors to make things simpler�� and

employing the following common�CRCW algorithm�

s��n�n�����

FOR i��� TO s
 in parallel
 DO

IF S	i� belongs to G THEN

S	i��status��Selected

ELSE

S	i��status��Neutral

REPEAT

finished��True

FOR i��� TO s
 in parallel
 DO

IF S	i��status � Neutral THEN

V	i���True

W	i���True

FOR i��� TO s � j��� TO s
 in parallel
 DO

IF i��j THEN

IF S	j��status � Selected THEN

IF Intersecting�S	i�
S	j�� THEN

W	i���False

FOR i��� TO s
 in parallel
 DO

IF S	i��status � Neutral THEN

IF NOT W	i� THEN

S	i��status��Rejected

FOR i��� TO s � j��� TO s
 in parallel
 DO

IF i��j THEN

IF S	j��status � Neutral THEN

IF Intersecting�S	i�
S	j�� THEN

IF �S	i��length � S	j��length� OR

��S	i��length � S	j��length� AND �i�j�� THEN

V	i���False

FOR i��� TO s
 in parallel
 DO

IF S	i��status � Neutral THEN

finished��False

IF V	i� THEN

S	i��status��Selected

UNTIL finished

��

Correctness

The line segments are represented by the S�array� Each element in S has a status �eld that tells
us if the corresponding line segment is one of G�s original edges or a diagonal that belongs to the
greedy triangulation �Selected�� if it is a discarded diagonal �Rejected�� or if it is a diagonal whose
usefulness hasn�t been determined yet �Neutral�� The way the segments are indexed depends on
the input order of the vertices� S� being the line segment between vertex and vertex �� S�� the
line segment between vertex and vertex �� and so on� If two intersecting diagonals happen to be
of the same length� the one with the lowest index is assigned higher priority�

The V� and W�arrays are modi�ed when a diagonal is blocked by a shorter Neutral diagonal or
by a Selected diagonal!edge� respectively� During each iteration� the remaining Neutral diagonals
are either Selected� Rejected� or preserved as Neutral depending on the contents of V and W�
�A Neutral diagonal blocked by a Selected diagonal or an edge has to be discarded�� The algorithm
keeps on running until no Neutral diagonals remain�

When the algorithm ends� S�i �status will have been set to either Selected or Rejected �for all
valid values of i�� The line segments corresponding to Selected array elements are the ones that
constitute the greedy triangulation of G�

Lemma �	�
The algorithm produces a greedy triangulation of G�

Proof
First all of G�s edges are Selected� Then every possible diagonal is checked against all the others�
A diagonal is Selected if and only if it is shorter �or of the same length and has a lower index� than
all other diagonals that it intersects and it doesn�t intersect any of the original edges in G� This is
because its status is changed from Neutral to Selected only if its V�element and W�element still are
equal to True at the end of one set of tests� When no Neutral diagonals are left� �nished is never
changed to False� and the algorithm terminates� �

Intersection test

To implement the intersection test� we can �rst test if the two segments� bounding boxes intersect�
�A bounding box is the smallest rectangle with sides parallel to the x�axis and y�axis that contains
the segment�� If the bounding boxes don�t intersect� the segments can�t intersect and we are �nished�
If the bounding boxes do intersect� we then proceed to check if segment �p�� p�� straddles segment
�p	� p�� and vice versa� This is easily done by using cross�products
 if

��p	 � p�� � �p� � p���z � ��p� � p�� � �p� � p���z � �

then �p	� p�� straddles �p�� p��� and if it is � � then �p	� p�� does not straddle �p�� p��� Two line
segments that each straddle the line containing the other must intersect� In some boundary cases
the product of cross�products above turns out to be equal to zero� which means p	 or p� lie on
the line containing segment �p�� p��� Since the bounding boxes intersect� the segments intersect�
However� two segments sharing exactly one common endpoint are not considered to intersect �they
are just connected�� In these special cases a few simple checks involving the endpoints have to be
carried out�

Analysis

Diagonals that belong to the greedy triangulation are called greedy edges� Depending on how the
input vertices are related geometrically� the parallel greedy triangulation algorithm will require one
or more iterations to complete� During iteration j in the REPEAT�loop� a number of greedy edges
are produced �their S�i �status �elds are set to Selected�� The set of all greedy edges located in
iteration j is called generation j�

�

AB AE BC CD DEB

C

D

A E

(Shorter)

(Longer)
AC

BD

BE

AD

CE

Figure ���� A set of points and the length relationship between blocking diagonals�

Iteration 2

Iteration 1 C

D

C

D

A

A

E

E

B

B

Figure ���� During iteration � AC is blocked by BD� In iteration �� BD is no longer around to
cause AC any trouble�

The convex hull will always belong to generation since no line segments intersect it� but some
of the other greedy edges can be more intricately embedded in the graph� See Figures ��� and ���
for an example�

The algorithm�s running time is determined by the number of times it has to execute the
instructions in the REPEAT�loop� One iteration takes O��� time� so the total running time has to be
O�k� if k is the number of iterations required to complete the greedy triangulation� Actually� after
all greedy edges have been found� the algorithm has to go through one �nal iteration �in which no
more greedy edges are found� of course� to make sure it is �nished� but this can be ignored since
we are only interested in what happens asymptotically�

Lemma �	�
Generation j consists of at least one greedy edge� � � j � k�

Proof
Assume there are p Neutral diagonals at the beginning of iteration j� Some of them are blocked
by diagonals that were Selected in iteration j � �� and subsequently ignored� This leaves q Neutral
diagonals� q has to be � � or �nished would never be set to False �which only occurs in iteration
k � ��� At least one of the q Neutral diagonals has a length shorter or equal to the lengths of the
q � � other diagonals� �If two or more diagonals are of the same length� one will have an index
lower than the others�� Its V�element is never changed to False� and so it gets Selected at the
end� Lemma �� guarantees that only greedy edges are produced� which completes the proof for
Lemma ���� �

��

There are at most �n � �� O�n�� greedy edges in GT �G� �see Corollary ����� so Lemma ���
implies that the algorithm produces O�n� generations in the worst case and thus requires O�n�
iterations to complete� This gives a total running time of O�n�� Since the greedy triangulation
problem is P�complete� this is not surprising �a total running time that was polylogarithmic would
have been� though"��

����� Average number of generations needed to complete

As one might suspect� the O�n� bound on the number of generations is overkill most of the time�
One question that naturally arises is� How many generations are needed to complete the parallel
greedy triangulation in the average case#

To get an idea of what the average case looks like� the following experiment was repeatedly
carried out on the computer�

 For a certain n� randomly place that many points in the plane� �To get statistically inde�
pendent and uniformly distributed numbers between � and � a prime modulus multiplicative
linear congruential generator like the one described in Park & Miller ��� was used��

 Triangulate the set of points using the parallel greedy triangulation algorithm described above�
�Parallel processors weren�t actually employed� so they had to be simulated��

 Count the number of generations needed to complete�

As an example� Figure ��� illustrates the results for n � ���

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of generations to finish

O
cc

ur
re

nc
es

Histogram for n=600 (880 simulations)

Mean : 4.0739

Stddev. : 0.5441

91

642

138

9

Figure ���� The parallel greedy triangulation algorithm applied to ��� sets of ��� randomly selected
points in the plane produced a total of � generations in � of the cases� � generations in ��� of the
cases� and so on�

��

The experiment was repeated for di�erent values of n �up to ���� ���� million times� as listed
in Table ��� By plotting the average number of generations versus n� the graph in Figure ��� was
obtained� The curve is close to y � �����	 � ����� ln�n�� as can be seen in Figure ���� �This is
a least�squares approximation�� The results seem to indicate that only O�log�n�� generations are
required to �nish the greedy triangulation in the average case�

For a �xed n� the number of generations needed to �nish is a bounded� positive integer� Let
p�� p�� � � � � pr represent the di�erent probabilities of it being � �� ���� or r� If m independent tries are
carried out and Xi denotes the number of times the result is i� the stochastic variable �X�� � � � � Xr�
is multinomially distributed� �See Blom �� or any other elementary book on statistics for a detailed
explanation of why�� Thus�

pX������Xr�k�� � � � � kr� �
m�

k�� � � � kr�
pk�� � � � pkrr

where
P

pi � �� and all ki assume non�negative integer values with
P

ki � m�

Nr� of Average Nr� of Average Nr� of Average
n exp� nr� of gen� n exp� nr� of gen� n exp� nr� of gen�

�� ���� ����	
 ��� ���� ������

�� ���� �����	 ��� ���� ������
�� ���� ������ ��� ���� ���	��
�	 ���� ������ �	� ���� ������

� ������ ���	�� �� ���� ������ ��� ���� ������

 ������ �����
 �
 ���� �����
 �
� ���� ��	���

� ������ ������ �� ���� ����
� ��� ���� ��	�
�
� ������ ������ �� ���� ������ ��� ���� ��	���
� ������ ������ �� ���� ���
�
 ��� ���� ������
�� ������ ��	�	�
� ���� �����
 ��� 	��� ������
�� ������ ������
� ���� ������ ��� ��� ��
�

�� ������ ��

�

� ���� ����
� ��� ���� ��
	��
�� ������ ����	�
� ���� �����	 ��� ��� ��

��
�	 ������ ����
�
	 ���� �����
 ��� ���� ������
�� ������ ������
� ���� ���	
� ��� ��� ���	��
�
 ������ ������

 ���� �����	 	�� ���� ������

�� ������ ������
� ���� ������ 	�� �� ������
�� ������ ����	�
� ���� ����
� ��� �	� ������
�� ������ ������
� ���� ������ ��� �� 	��	��
�� �
���� ���	�� �� ���� ������
�� ��� 	�����

�� ����� ������ �� ���� ������ ��� ��	 	�����
�� ����� ������ �� ���� ������ ��� �� 	���
�
�� ����� ������ �� ���� ������ ��� 	� 	�����
�	 ����� ������ �	 ���� ���	�� ��� ��� 	�����
�� ����� ������ �� ���� ������ ��� �� 	����	

�
 ����� ������ �
 ���� ����	� ���� �� 	�����
�� ����� ������ �� ���� ����
�
�� ����� ����
� �� ���� ����
�
�� ����� ��	��� �� ���� ������
�� ����� ��	��� �� ���� ���
��

�� ����� ��			� �� ���� ���	��
�� ����� ��	�

 �� ���� ���
��
�� ����� ��	��� �� ���� ������
�	 ����� ������ �	 ���� ������
�� ����� ������ �� ���� ������

�
 ����� ���	�� �
 ���� ����	�
�� ����� ���
�� �� ���� ������
�� ����� ������ �� ���� ���	��
�� ����� ����
� �� ���� ������
	� ����� ��
��	 �� ���� ����
�

	� ����� ��
��� �� ���� ���	��
	� ����� ��
	�� �� ���� ���
��
	� ����� ��

�� �� ���� ������
		 ����� ��
�	� �	 ���� ������

	� ����� ������ �� ���� ������
	
 ����� ������ �
 ���� ���
��
	� ����� ������ �� ���� ������
	� ����� ���	�� �� ���� ������
	� ����� ������ �� ���� ���

�

�� ����� ���
�� ��� 	���� ������

Table ��� The exact number of times the experiment in Section ���� was carried out for various
values of n� The running time increases dramatically as n grows� which is why there are fewer
results for large n�s�

��

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

3.5

4

4.5

Number of points

N
um

be
r

of
 g

en
er

at
io

ns
 to

 fi
ni

sh
 (

av
er

ag
e)

Figure ���� The average number of generations required for the parallel greedy triangulation algo�
rithm to complete�

1 2 3 4 5 6 7
1

1.5

2

2.5

3

3.5

4

4.5

5

ln(n)

N
um

be
r

of
 g

en
er

at
io

ns
 to

 fi
ni

sh
 (

av
er

ag
e)

Figure ���� The average number of generations required to complete plotted as a function of ln�n��
The dashed line is a least�squares approximation� Its equation is y � �����	 � ����� ln�n��

��

����� Average number of greedy edges in di�erent generations

The number of greedy edges in a speci�ed generation number depends not only on n� but also on
the vertices� coordinates since the total number of edges equals �n � m � �� where m tells how
many points are on the convex hull �see Theorem ����� And just like before� complicated chains of
geometric relationships between blocking diagonals add to the mayhem�

The next series of simulations were performed in order to study how many greedy edges belong
to di�erent generations in the average case� A slight modi�cation to the program above resulted
in histograms like the ones displayed in Figure ���� The experiment was conducted a total of
������ times for various values of n between � and ��� �see Table ����� Finally� the graphs in
Figure ��� were obtained by combining all the collected data� The number of greedy edges in each
generation appears to be linearly related to n�

For a given n and a �xed generation number� the number of greedy edges is a bounded� positive
integer� If we let Xi represent the number of times the result is i� then the stochastic variable
�Xq � � � � � Xr� is multinomially distributed� where q is the minimum and r the maximum possible
outcome�

n 'exp�
� �����
� �����
� �����
� �����
� �����
� �����
� �����
�� �����
�� �����
�� ����
��� ����
��� ����
��� ���
��� ���
��� ���
��� �
��� ��
��� ��
��� ��

Table ���� The exact number of times that the diagonal�counting experiment in Section ����� was
carried out for di�erent n�s�

��

1560 1580 1600 1620 1640 1660
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Diagonals produced in generation 1

O
cc

ur
re

nc
es

n=600 points

2 5

27

94

227
236

157

48

4

Mean : 1627.23

Stddev. : 12.3162

80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Diagonals produced in generation 2

(800 simulations)

9

85

263

286

129

22

6

Mean : 127.40

Stddev. : 9.8792

Figure ���� Two histograms showing the number of times that di�erent quantities of greedy edges
were found in generations and � by the parallel greedy triangulation algorithm� ��� di�erent sets
of ��� random points were tested�

0 500 1000
0

1000

2000

3000
GENERATION 1

0 500 1000
0

50

100

150

200

250
GENERATION 2

0 500 1000
0

1

2

3

4

5
GENERATION 4

0 500 1000
0

10

20

30

40
GENERATION 3

A
ve

ra
ge

 n
um

be
r

of
 g

re
ed

y
ed

ge
s

Number of points

Figure ���� The average number of greedy edges in generations through ��

��

��

Chapter �

Parallel dynamic programming for

simple polygons

A cubic time algorithm for �nding a minimum�weight triangulation of a simple polygon by using
dynamic programming was presented in Chapter ���� If more than one processor is available� the
work involved can be distributed so that the total running time is reduced� This chapter contains
some CREW PRAM dynamic programming algorithms that accomplish this� They are focused
on solving the MWT problem for simple polygons� but can be modi�ed to solve other optimal
triangulation problems�

A fundamental �and time�consuming� part of all dynamic programming algorithms is minimizing
some function� With just one processor� �nding the minimum of n arbitrary values takes O�n� time
since all values have to be checked� Finding the minimum value with a CREW algorithm takes
��log�n�� time� even with an unlimited number of processors �see �� �� But O�n� log�n�� processors
su�ce� Divide the n di�erent values into bn� log�n�c groups of blog�n�c values each and at most one
group made up of the remaining values� Assign one processor to each group� and �nd the minimum
of each one in parallel� Scanning the O�log�n�� values in a group takes O�log�n�� time� Next� let the
dn� log�n�e locally minimal values be leaves of a complete binary tree� In parallel� compare all sibling
leaves using dd�n� log�n��e�	e processors� and assign each minimum value to the corresponding
parent node� Remove the leaves and repeat the process until only one value remains� In each stage�
the number of values in the tree is halved� so O�log�n� log�n��� � O�log�n�� stages are needed for the
minimum value to reach the root� Thus� the total time required to �nd the minimum of n arbitrary
values with an O�n� log�n�� processor CREW algorithm is O�log�n�� �O�log�n�� � O�log�n���

The minimumvalue can be found in O�log�log�n���log�log�	p�n��� time� where p is the number
of processors� if the common�CRCW model is used instead �see Karp and Ramachandran � ��
If p � n�
� for any constant 	 � �� the time needed is

O�log�log�n�� � log�log�	n�
��n��� � O�log�log�n�� � log�log�	n����
� O�log�log�n�� � log�� � 	 log�n���
� O�log�log�n�� � log�	 log�n���
� O�log�log�n�� � log�	� � log�log�n���
� O�� log�	��
� O���

In other words� the minimum can be found in O��� time by employing at least n�
� processors�
where 	 is some constant � �� The running times for the CREW algorithms below can therefore
be improved by a factor log�n� if concurrent writes are allowed and a polynomial number of extra
processors are added� For simplicity� only the CREW versions are described�

��

��� O�n	� log�n�� processors� O�n log�n�� time

The running time of the algorithm in Chapter ��� can easily be reduced by making a few modi�ca�
tions� As before� let n denote the number of vertices in the input polygon� If we have O�n�� log�n��
processors� the algorithm�s i�loop can be carried out in O�log�n�� time for a �xed value of l� The
processors simultaneously perform the O�n�� �independent� crossing tests for all valid i�s and k�s in
O�log�n�� time by letting each processor handle log�n� crossing tests� Next� they combine the O�n�
resulting boolean values� for each i� once again needing a total of O�n� log�n��O�n� � O�n�� log�n��
processors and taking O�log�n�� time� The processors then calculate all the O�n� di�erent possible
values for each t�i� j�� � � i � n� l and j � i � l � �� using the already determined values of t�i� k�
and t�k� j�� where i � k � j� Finally� the values that minimize each t�i� j� are selected and stored�
which also requires O�log�n�� time and O�n� log�n��O�n� � O�n�� log�n�� processors since there
are O�n� values to choose from for each i� Letting l run from � to n takes a linear amount of time�
All in all� the algorithm�s running time is improved from O�n	� to O�n log�n���

��� O�n�� processors� O�log�n�	� time

The depth of the recursion in the previous method can be linear� which means that it has to be
modi�ed if a sublinear time algorithm is wanted� In general� logarithmic recursion depth can be
obtained if� in every recursion step� all given sets of data are split into tinier ones that are smaller
by a constant fraction� This is because if R�m� is the maximum size of all sets in step m �i�e� the
number of elements they are allowed to contain in step m�� and
R�m� � R�m� �� � c� where c is a constant �� � c � ��� then

R�m� � R�m � 	� � c� � � � � � R��� � cm

Let R�m� � � and R��� � n� and we obtain

� � n � cm

log��� � log�n� �m log�c�

m log���c� � log�n�� �

m � log�n�

log���c�

So� the bottom of the recursion is reached in O�log�n�� steps�
A dynamic programming method that �like usual� works backwards will be described in this

section� It starts out with optimal solutions for small subpolygons and works its way up to the
top by constructing optimal solutions for bigger and bigger subpolygons in each recursion step�
�The size of a polygon!subpolygon is the number of vertices it contains�� It is essential that the
new polygons acquired in each step are larger than the old ones by at least a constant factor ��c
�� � c � ��
 if not� the logarithmic time bound will never be attained�

A more formal de�nition of what we mean by �subpolygon� is needed� A q�subpolygon of a
simple polygon P � where q � Z
� is a simple polygon whose perimeter consists of exactly q diagonals
located inside P �called d�edges� as well as up to q maximal� disjoint pieces of P �s perimeter called
chains� We de�ne a chain of a polygon P to be a section of its perimeter that includes at least two
consecutive vertices� Chains in a q�subpolygon are always isolated from each other by d�edges� in
other words no two chains can share a common point� A corner vertex of a subpolygon is a vertex
that connects a chain and a d�edge or that connects two d�edges�

Now� examine pairs of nonintersecting diagonals instead of pairs of vertices �as in the original
method� in a simple polygon� One such pair divides the polygon into three subpolygons� Each
subpolygon contains at most two chains in addition to the one or two d�edges� Figure �� shows an
example�

From now on when referring to �subpolygons�� we will always mean �subpolygons of the original
polygon with n vertices��

�To compute the OR of n boolean values� a method analogous to the one for �nding the minimum value can be

employed� which results in an O�n� log�n�� processor and O�log�n�� time requirement for the CREW model�

��

Figure ��� A pair of nonintersecting diagonals cuts the polygon into three subpolygons
�two �subpolygons and one ��subpolygon��

Before we can continue� we need to develop a special version of the renowned planar separator
theorem by Lipton & Tarjan ��� �

Lemma �	�
Let T � �V�E� be a connected� undirected tree with degree�v� � � for all v � V and let n � jV j�
There exists an edge e � E whose removal disconnects T into two disjoint subtrees� each with
� �n
�

	 vertices�

Proof
�From Kozen �� �
Create a directed tree T � by determining for each e � E the sizes of the two components obtained
by deleting e �e�g� by a recursive depth��rst search in linear time� and orienting e in the direction
of the smaller component� If the two components are equal in size� let e point in either direction�

To see that T � really is a directed tree� we have to prove that no vertex has indegree � �� Assume
that the edges �x� z� and �y� z� both are oriented toward z �so that z has indegree � ��� and X� Y �
and Z are subtrees of T � as shown in Figure ���� Then jXj � jY j � jZj and jY j � jXj � jZj� But
this results in jZj � �� which is a contradiction�

Call the unique root of T � r� Let A� B� and C be the maximal proper subtrees of r� where A is
the one of maximum size� Because of the orientation of the edge between r and A�

jAj � n

	
� 	n� �

�
� ����

Next� jBj � jAj and jCj � jAj� so
jBj� jCj � 	jAj

and

n� � � jAj� jBj� jCj � jBj� jCj
	

� jBj� jCj � �
jBj� jCj

	
�

This means

jBj� jCj� � � 	n� �

�
� �����

���� and ����� prove that the edge connecting r to A will do� �

�

X Y

yx

z

Z

Figure ���� The edges �x� z� and �y� z� are directed toward z� X� Y � and Z are subtrees of T ��

Theorem �	�
Given a simple polygon P with n vertices and a triangulation T of P � there exists a diagonal in T
that divides P into two parts with � �n
�

	 vertices each�

Proof
Let TR be an undirected tree whose nodes correspond to triangles inside T and whose edges cor�
respond to diagonals� See Figure ����

Since P is a simple polygon� there are no cycles in TR� and TR is indeed a tree� �If there was a
cycle in TR� the triangles in T would have to contain some vertex or vertices located in the interior
of P � which contradicts the fact that P is a simple polygon� This is illustrated in Figure �����

Each triangle is adjacent to at most three other triangles� which means that each node has
degree � ��

According to Lemma ��� TR can be split into two binary subtrees with � �n
�
	 nodes each by

removing an edge e� Going back to the original representation� the diagonal that corresponds to
e partitions P into two subpolygons� Each subpolygon must have less than �n
�

	
triangles� which

means � �n
�
	 � 	 � �n
�

	 vertices �a triangulated polygon with n vertices always contains n � 	
triangles
 see Theorem ����� �

F

E
B

A A

B

DC

E

T:

TR:

C

D

F

Figure ���� The relationship between T and TR�

��

A

BC

D E

A

B E

C D

TR:

T:

Figure ���� A cycle in TR would correspond to triangles with vertices inside P �

Corollary �	�
Given a simple polygon P with n vertices and a MWT of P � there exists a diagonal called a separator
in the MWT that divides P in two parts with � �n
�

	 vertices each� �

Corollary ��� implies that optimal solutions for � and ��subpolygons of maximum size m can
be found in one recursion step if optimal solutions for all � and ��subpolygons of size � �m
�

	 are
available� The way to do this is by testing all diagonals that divide the speci�ed subpolygon into
two subpolygons of size � �m
�

	 � computing the resulting triangulation weights using the stored
MWTs of the smaller subpolygons� and selecting a triangulation with the smallest weight� Such a
triangulation will be a MWT since Corollary ��� guarantees that at least one diagonal in the MWT
is tested� �From Chapter ��� we recall that a diagonal belonging to the MWT of a simple polygon
always joins two optimally triangulated subpolygons together��

Before the recursion starts� the simple sequential method from Chapter ��� is used to optimally
triangulate all � and ��subpolygons of size � � with O�n�� processors in O��� time� �There are
O�n� � d� � O�n�� such subpolygons� where d is some constant�� Subsequently� if R�k� is the
maximum size of all � and ��subpolygons taken care of in step k� R�k � �� � 	R�k��

� �
There is one small problem with this approach� A discovered separator might partition a given

��subpolygon into one �subpolygon and one ��subpolygon �see Figure ��� �c��� and we don�t have
the MWTs for ��subpolygons�

(a) (b) (c)

Figure ���� �a� A separator always divides a �subpolygon into one smaller �subpolygon and one
��subpolygon� �b� A ��subpolygon can be cut into two smaller ��subpolygons by a separator�
�c� A separator that splits a ��subpolygon into one �subpolygon and one ��subpolygon�

��

Figure ���� A ��subpolygon divided into three ��subpolygons and a triangle�

Figure ���� Two di�erent subpolygons are de�ned by the same quadruple of vertices�

However� a ��subpolygon can always be divided into at most three ��subpolygons by some
triangle like in Figure ���� If the ��subpolygon is of size � �m
�

	 � the ��subpolygons have less than
�m
�

	 vertices� which means that their optimal solutions are available�
By evaluating and comparing all valid con�gurations of ��subpolygons and matching triangles�

we cover the ��subpolygon case as well since at least one of the triangles we test has to belong to a
MWT of the ��subpolygon�

In each recursion step� there are O�n�� � and ��subpolygons to be taken care of� �There are�
n
�

�
alternative ways to select a quadruple of vertices� For every quadruple� there are at most two

ways to draw two d�edges and get a valid subpolygon� See Figure �����
Every subpolygon requires O�n�� sets of calculations to be performed because �rst the separator

can be chosen in O�n�� ways� and then O�n	� di�erent triangles have to be tested� The optimal
solutions for the induced � and ��subpolygons are looked up and combined with the dividing
triangle� whereupon the resulting O�n�� triangulations are evaluated and compared� The best
solution is selected and recorded for future use�

By assigning one processor to each set of calculations and then using the same processors to
�nd the best triangulation for each subpolygon� a total of O�n�� � O�n�� � O�n�� processors are
needed in each recursion step� The processors are recycled between successive steps in the recursion�
so O�n�� parallel processors are enough for the whole algorithm� Finding the minimum value in
each step takes O�log�n��� � O�
 log�n�� � O�log�n�� time� and there are O�log�n�� steps in the
recursion� so the algorithm�s running time is O�log�n����

��

��� O�n� log�n�� processors� O�log�n�	� time

Rytter invented a parallel pebble game on binary trees to �nd a simpli�ed structure for solving
some related dynamic programming problems in ��� � He proved that the MWT problem for a
simple polygon with n vertices can be solved in O�log�n��� time using a CREW PRAM model with
O�n�� log�n�� processors�

The method can be described geometrically� making it easier to understand� It is very similar
to the method in Section ���� but reduces the number of processors required by a factor of n	 log�n�
without slowing down the asymptotic running time"

As before� the main idea is to use the stored optimal triangulations for � and ��subpolygons
of size � �m
�

	 to get optimal triangulations for � and ��subpolygons of maximum size m in one
recursion step� �All � and ��subpolygons of size � � are triangulated optimally in O��� time with
O�n�� processors with the sequential method from Chapter ��� before the �rst recursion step�� Each
recursion step is split into four phases�

Phase �	

Find optimal triangulations for the O�n�� di�erent �subpolygons withm or fewer vertices by testing
all O�n�� ways of drawing one diagonal that cuts a given �subpolygon into � and ��subpolygons of
size � �m
�

	 � Optimal solutions for these smaller subpolygons are available from previous recursion
steps� At least one separator will always be examined because of Corollary ����

Phase �	

Triangulate every ��subpolygon with a maximum of m vertices and exactly one chain optimally by
testing triangles that divide it into smaller parts that have been taken care of earlier� By testing
all triangles that partition the ��subpolygon as in Figure ���� every possible solution is checked�
The dividing triangle may or may not be degenerate
 for cases in which area C in Figure ��� is
nonexistent� the triangle is in fact just a diagonal�

A

B

C

Figure ���� A ��subpolygon of size m with one chain is cut into two ��subpolygons �A and B� of
size � �m
�

	 � and one �subpolygon �C� of size � m by a dividing triangle� Optimal solutions for A
and B are available from earlier recursion steps
 the optimal solution for C is fetched from phase �

��

(b)(a)

Figure ���� �a� Case �b� Case �

T 1

T 2
T 3

Figure ���� P is cut into two ��subpolygons of size � �m
�
	 with one chain and one �subpolygon

by T	� The dotted line is the original separator�

To prove that all possibly optimal solutions are covered� we will once more use Corollary ���� It
tells us that any MWT of a polygon P contains at least one separator� If a given separator of the
��subpolygon connects the chain and the opposite corner vertex� we get two ��subpolygons� both
of size � �m
�

	 �case in Figure ����� Otherwise� it connects two vertices on the chain� giving us
one �subpolygon and one ��subpolygon �case � in Figure �����

In case � optimal solutions are available right away since the optimal subsolutions are known�
The optimal solutions are available in case �� too� but to see this requires a little more thought�
The separator belongs to two triangles in the MWT of P � Let T� be the one whose third vertex lies
outside the subchain de�ned by the separator� If the third vertex happens to be the corner vertex
opposite of the chain� the other two sides of T� split P into one or two ��subpolygons with one
chain and one �subpolygon� If it isn�t� it lies on the same chain as the separator� and we consider
the side that cuts o� T� together with two �subpolygons from P instead� This diagonal has to be
a side in some other triangle T� in the MWT� By repeating this process� we eventually get to a
triangle Tk whose third vertex is the opposite corner vertex� See Figure ��� for an example� By
observing that Tk splits P into one or two ��subpolygons of size � �m
�

	 with one chain and one
�subpolygon of unrestricted size� we realize that any optimal triangulation must contain a dividing
triangle of the type illustrated in Figure ���� and that an optimal solution can be found if we test
all valid dividing triangles and compare the resulting triangulations�

There are O�n	� ��subpolygons to be handled in this phase� For each one� there are O�n�� pos�
sible ways to de�ne the dividing triangle� The induced subpolygons are triangulated optimally and
compared as described above� Finally� the best triangulation �for each of the checked ��subpolygons�
is stored�

��

Phase �	

Compute optimal solutions for all 	��subpolygons of size � m� A 	��subpolygon of size m is a
special kind of ��subpolygon that has one or two chains and a diagonal from a corner vertex to
a vertex on the opposite chain in its MWT such that the two smaller ��subpolygons satisfy the
following conditions�

 A ��subpolygon with only one chain can be of any size �up to m� that is��

 A ��subpolygon that comprises two chains must have � �m
�
	 vertices�

Optimal solutions for all ��subpolygons of size � m with one chain have been found in phase �
and optimal solutions for the other �smaller� ��subpolygons in previous recursion steps�

For each one of the O�n�� ��subpolygons� O�n� � O�n� � O�n� � O�n� � O�n� diagonals are
tested� The triangulations are put together� evaluated� and the best solution for each ��subpolygon
so far is recorded� ��subpolygons that are 	��subpolygons will be optimally triangulated at the end
of this phase� but ��subpolygons like the one in Figure ��� will not�

B

A

Figure ��� A 	��subpolygon is always divided into two ��subpolygons A and B by some diagonal
in its MWT� A has size � m and B has size � �m
�

	 �

Figure ���� If the optimal triangulation for the given ��subpolygon looks like this� it is not a
	��subpolygon� Consequently� its optimal triangulation will not have been discovered by the end of
phase ��

��

Phase �	

In the last phase� optimal triangulations for the remaining ��subpolygons of size less than or equal
to m are found�

There are two ways that separators in a ��subpolygon can be oriented� A given separator
either splits the ��subpolygon into two smaller ��subpolygons �case in Figure ����� or into one
�subpolygon and one ��subpolygon �case � in Figure ����� The situation is almost identical to
phase �� By using the same technique� we can prove that there always exists a dividing triangle Tk
that partitions a ��subpolygon of size � m into one or two ��subpolygons of size � �m
�

	 with one
or two chains and one ��subpolygon of size � m with exactly one chain� See Figure ����

One of the ��subpolygons with one or two chains can be combined with the ��subpolygon of
size � m to obtain a 	��subpolygon of size � m�

So� phase � of the algorithm is� For each of the O�n�� ��subpolygons with two chains� inde�
pendently test the O�n�� possible diagonals that connect the two chains and might partition the
��subpolygon into one ��subpolygon of size � �m
�

	 and one 	��subpolygon of size � m� �These
have already been optimally triangulated and can be combined�� A MWT for each ��subpolygon
of size � m is obtained by evaluating the di�erent resulting triangulations and selecting one with
the lowest weight�

(a) (b)

Figure ���� �a� Case �b� Case �

T 1

T 2
T 3

Figure ���� P is partitioned into two ��subpolygons of size � �m
�
	 with two chains and one

��subpolygon with one chain� The dotted line is the original separator�

��

Analysis

The method can be implemented on a CREW PRAM machine to run in O�log�n��� time� The
recursion consists of O�log�n�� steps� and each recursion step can be completed in O�log�n�� time
if su�ciently many parallel processors are employed� Phase requires O�n�� � O�n�� � O�n��
processors� phase � O�n	� � O�n�� � O�n��� phase � O�n�� � O�n� � O�n��� and phase � O�n�� �
O�n�� � O�n�� to test all possibilities in O��� time and then �nd the best one in log�n� time� The
phases occur one at a time� so the same processors can be used over and over� Thus� a total of
O�n�� processors is needed� This number can be reduced by forcing each processor to simulate
log�n� others� Only O�n�� log�n�� processors would then be needed for phase � �and hence� for the
whole algorithm�� Each recursion step could still complete in O�log�n�� time �O�log�n�� time to
test all possibilities plus O�log�n�� time to �nd the minimum value��

As a �nal note� phase � might seem redundant at a �rst glance since phase � can be modi�ed
to directly handle all ��subpolygons with two chains� However� this would lead to an O�n�� log�n��
processor requirement �in the last phase� O�n	� di�erent possibilities would have to be tested for
every ��subpolygon instead of just O�n����

��� O�n	��
� log�n�� processors� O�n���
 log�n�� time

All the sublinear time dynamic programming methods described so far require a large number of
processors� If we just want to break the O�n� time bound� there are ways to do this without having
to use so many processors� The method in this section �nds a minimum�weight triangulation for
a simple polygon with n vertices recursively in O�n���� log�n�� time with O�n����� log�n�� parallel
processors�

First� in parallel� �nd and store optimal triangulations for all � and ��subpolygons containing
up to n� vertices� � is a parameter �� � � � �� that will be speci�ed later on� Using the ordinary
sequential dynamic programming method from Chapter ���� this takes O��n��	� � O�n	�� time�
According to Figure ���� there are O�n�
��� di�erent subpolygons to be considered� so O�n�
���
processors are needed�

1

2

4

3

Figure ���� One vertex can be selected in O�n� ways� For the second vertex� there are also
O�n� possible choices� For every given pair of vertices� the third and fourth vertices are chosen
independently from a set of O�n��� All in all� there are O�n� � O�n� � O�n�� � O�n�� � O�n�
���
ways to select four vertices in this manner�

��

(b)

(a)

Figure ���� A base triangle of a �subpolygon of size � m� n� � 	 that induces�
�a� two A�subpolygons of size � m ��the nice case��
�b� one A�subpolygon of size � m and one A�subpolygon of size � m ��the not�so�nice case��

After completing the initial work� the main recursive process is initiated� At the beginning
of recursion step k �for some positive integer k�� we assume that all �subpolygons of size � m�
where m � k �n�� have been triangulated optimally� We want to make the optimal solutions for
all �subpolygons of size less than or equal to m� n� � 	 available by the end of recursion step k�
�The (��� will be accounted for later��

Any d�edge that de�nes a �subpolygon has to be a side in some triangle belonging to an optimal
triangulation T of the �subpolygon� Such a triangle is called a base triangle �of T �� The other two
sides in a base triangle cut the �subpolygon into two smaller �subpolygons called �A�subpolygons�
If they were both of size � m when the given �subpolygon had size m � n� � 	� their optimal
triangulations would be available right away� Unfortunately� in some cases one A�subpolygon has
more than m vertices� �See Figure ����b���

However� a base triangle in a A�subpolygon like this will cut it into two smaller �subpolygons
�this time called B�subpolygons�� At least one B�subpolygon has to have size � m
 the other one
can still have size � m� Continuing this process until all the induced �subpolygons have size � m�
we might get C�polygons� D�polygons� etc� The important thing to notice is that until the last
stage is reached� the total number of di�erent vertices in all the �subpolygons of size � m is � n��
�If it was larger than n� then the remaining �subpolygon couldn�t be of size � m�� Therefore� the
last base triangle� called a slicer triangle� partitions the original �subpolygon into�

 The base triangle itself

 One ��subpolygon of size � n� �degenerate� i�e� size �� in �the nice case��

 Two �subpolygons of size � m

Optimal solutions for all of these are available�
To �nd an optimal solution for a �subpolygon of size m � n� � 	� we have to locate a slicer

triangle� The other base triangles are contained within the MWT of the ��subpolygon induced by
the slicer triangle since by de�nition� base triangles always belong to the optimal triangulation�
The �subpolygon might have two �or more� di�erent slicer triangles� Since all triangulations that
originate from slicer triangles are optimal� any one of them can be selected�

��

Figure ���� The �subpolygon of size m� n� � 	 is repeatedly divided into smaller pieces by base
triangles� Note that the slicer triangle de�nes a ��subpolygon of size � n��

By combining a ��subpolygon of size � n�� two �subpolygons of size � m� and a base
triangle like we are doing here� we can obtain optimal solutions for any �subpolygon whose size
is � m � n� � 	� We now see that the (��� has to be included because two of the vertices are shared
by the ��subpolygon and the union of the �subpolygons�

In each recursion step� O�n� �O�n�� � O�n�
�� �subpolygons are examined� �The same as the
number of diagonals that cut o� a �subpolygon of size z� where m � z � m� n�� 	�� Inside each
�subpolygon� there are O�n�� �O�n�� � O�n� � O�n�
��� triangles that might be slicer triangles�
To simultaneously evaluate the resulting triangulations for all possible slicer triangles in O��� time�
and select the best triangulation in log�n� time means O�n�
�� � O�n�
��� � O�n�
	�� parallel
processors have to be used� As in the previous method� each processor can simulate log�n� others
and still �nish one recursion step in O�log�n�� time� which lowers the required number of processors
to O��n�
	��� log�n���

How many recursion steps are needed# Every step increases the maximum size of optimally
triangulated �subpolygons by n� � 	� so by step k all �subpolygons of size � k�n� � 	� will have
been taken care of� Solving the equation x�n��	� � n yields x � n��n��	�� When n grows large�
the (��� can be ignored� and we get x � n��� asymptotically� Every step takes O�log�n�� time� so
the execution time for the main loop is O�n��� log�n���

The preprocessing part used O�n�
��� parallel processors and took O�n	�� time� The total
number of processors is therefore O�max��n�
���� �n�
	�� log�n���� � O�n�
	�� log�n��� and the
total running time is O�n	�� � O�n��� log�n�� � O�max�n	�� n��� log�n����

By setting � � ��	
� we obtain a method that uses O�n����� log�n�� parallel processors and takes
O�n���� log�n�� time to complete�

�

��� General algorithm

The method from Section ��� can be adapted to situations where the allowed total running time is
less than O�n���� log�n�� by changing the parameter �� Naturally� the needed number of parallel
processors changes too� This section shows how�

According to Section ���� the preprocessing requires O�n�
��� processors and runs in O�n	��
time� where � is a parameter �� � � � ��� The main loop uses O�n�
	�� processors and runs in
O�n��� log�n�� time� The total number of processors is therefore O�max�n�
��� n�
	�� log�n��� �
O�n�
	�� log�n��� and the total running timeO�n	���O�n��� log�n�� � O�max�n	�� n��� log�n����
We want the main loop to dominate� yielding a total running time which is O�n��� log�n�� for
� � � � ��

� � � � ����

When � � � � ��	
� n	� � n��� log�n�� which means the running time is O�n��� log�n��� For
� � ��	
� the preprocessing stage takes more time than the main loop� To circumvent this� we have
to change our tactics somewhat� Some processors are unused until the main loop is reached� so the
�rst modi�cation involves making the processor utilization more e�cient�

The method from Section �� uses O�n�� log�n�� processors to optimally triangulate a simple
polygon with n vertices in O�n log�n�� time� If every processor is assigned the work of n others�
only O�n� log�n�� processors are needed while the running time is changed to O�n� log�n��� Here�
we have to triangulate � and ��subpolygons of size � n�� so the preprocessing time would be
O��n��� log�n��� � O�n�� log�n�� with this method� The total number of processors is increased
to O�n�
��� � O�n�� log�n�� � O�n�
	�� log�n��� but the main loop uses this many processors
anyway� The algorithm�s total running time is now changed to O�n�� log�n�� � O�n��� log�n�� �
O�max�n��� n���� log�n��� which is equal to O�n��� log�n�� since � � � � ����

��� � � � ��

For � � ���� we face the same problem as we did before� But this time we might have to use more
processors in the preprocessing stage than in the main loop in order to keep the preprocessing time
from growing faster than the main loop�s executing time�

Use the method described in Section ��� to optimally triangulate all � and ��subpolygons
of size � n� in O�log�n��� time with O�n�
��� log�n�� parallel processors� �Carry on like usual
until the MWTs of all � and ��subpolygons of size � n� have been computed� then stop� At
this point� O�n�� � O�n�� � O�n��� diagonals have been tested for each subpolygon� There
are O�n�
��� � and ��subpolygons of the right size� and each processor handles log�n� of them�
In other words� O�n��� �O�n�
��� log�n�� � O�n�
��� log�n�� processors are enough��

Similarly to the technique used above� letting one processor do the work of n��� others reduces
this number to O��n�
��� log�n����n����� � O�n�
��� log�n�� at the expense of increasing the time
needed to O�n��� log�n���� The main loop remains unchanged� so the whole algorithm requires
O�max��n�
��� log�n��� �n�
	�� log�n���� processors and takes O�n��� log�n����O�n��� log�n�� �
O�n��� log�n��� time� This is slightly worse than O�n��� log�n��� but still acceptable�

The total running time� T �n� ��� and the number of processors needed� P �n� ��� are thus given by�

T �n� �� �

�
O�n��� log�n��� � � � � ���
O�n��� log�n���� ��� � � � �

P �n� �� �

�
O�n�
	�� log�n��� � � � � ��	
O�n�
��� log�n��� ��	 � � � �

T �n� �� and P �n� �� are plotted as functions of � in Figure ����

��

0n log(n)

0.5n log(n)

1n log(n)

1/3

1n log(n)

0n log(n)
12/3

α
0

2n / log(n)

6n / log(n)

n / log(n)3.5

2n / log(n)

6n / log(n)

n / log(n)3.5

1/2

0.5n log(n)2

0.5n log(n)2 1n log(n)n log(n)0 2

α

Time Time

1/3

2

2

(a)

Processors

10 1/3

Processors

(b)

α

Time
2/ 3n log(n)

(c)

Figure ����
�a� The total running time� T �n� ��� A discontinuity occurs between � � ��� and � � ����
�b� The required number of processors� P �n� ��� The dotted line represents the preprocessing stage
and the dashed line represents the main loop� �The preprocessing stage uses more processors than
the main loop when � � ��
��
�c� T �n� �� and P �n� �� combined� There is a discontinuity in the time scale at n��	 log�n��

��

��	 Conclusion

This chapter presented some CREW PRAM dynamic programmingalgorithms for solving the MWT
problem for simple polygons� Their asymptotic running times depend on the number of parallel
processors employed� A short overview of the algorithms is given below�

Number of processors Running time Presented in

 O�n	� Section ���
O�n�� log�n�� O�n log�n�� Section ��

 Section ���
O�n����� log�n�� O�n���� log�n�� Section ���

 Section ���
O�n�� log�n�� O�log�n��� Section ���
O�n�� O�log�n��� Section ���

The general algorithm in Section ��� can be used when more than O�n�� log�n�� but less than
O�n�� log�n�� processors are available� Its running time is somewhere between O�n log�n�� and
O�log�n���� depending on the number of processors�

In a recent article by Galil & Park �� � Rytter�s approach is used to obtain a method that runs
in O�log�
����n log�n���
� time and requires O�n	�n�
��n
� log�
�� operations �
 corresponds
to our n��� For
 � n���� O�n���� log�n�� time and only O�n	� operations are required� This is
better than the algorithm presented here� which needs O�n����� log�n�� processors to complete in
O�n���� log�n�� time� i�e� O�n	��� operations� There might exist geometric methods like the ones in
this chapter that attain the same �optimal� result as Galil & Park�

��
 Generalization

The problem of constructing other types of triangulations such as the greedy triangulation can be
solved after making a few changes� If

� C is a class of triangulations of simple polygons with a special property� a C�triangulated
polygon that is split along a C�diagonal yields two C�triangulated subpolygons

�� There is an e�cient way of testing whether a given triangulation is a C�triangulation or not

then we can construct a C�triangulation of any simple polygon with methods based on the ones in
this chapter� Proceed like usual� but whenever di�erent ways of partitioning a given subpolygon into
smaller subpolygons �which have been taken care of already� are evaluated� test if the union between
the dividing diagonals and the smaller subpolygons is a C�triangulation instead of comparing the
resulting weights� If the C�triangulation test uses q�n� processors to complete in O�log�n�� time�
then a C�triangulation of a simple polygon can be obtained with O�p�n� �q�n�� processors in O�t�n��
time� where p�n� and t�n� are the processor and time requirements for the corresponding unmodi�ed
dynamic programming algorithm�

In �� � Levcopoulos� Lingas� and Wang showed that triangulation classes which impose a partial
order on their diagonals admit tests that can be carried out in O�log�n�� time by O�n	� log�n��
processors �using a CREW PRAM�� This result is valid for all PSLGs� but for partial orders
induced by equivalence relations with linearly ordered equivalence classes� even fewer processors
�i�e� O�n�� log�n��� are needed in the simple polygon case� Thus� it is possible to test if a given
triangulation of a simple polygon is a greedy triangulation in O�log�n�� time with O�n�� log�n��
processors� By combining this with what we said above� we get a method for constructing the
greedy triangulation of simple polygons that uses O�n����� log�n� � n�� log�n�� � O�n����� log�n���
processors and takes O�n���� log�n�� time�

Observe that the dynamic programming algorithms that run in O�n� time or more are un�
suitable for this kind of adaptation
 there are methods that are much more processor e�cient�
For example� one processor is enough for computing the greedy triangulation in O�n log�n�� time
�see Chapter ������� The algorithm from Section �� would also take O�n log�n�� time� but with
O�n�� log�n� � n�� log�n�� � O�n�� log�n��� processors�

��

Appendix A

Lower bounds for the

nonoptimality of the MST� and

GST�triangulations

In Chapter ����� we claimed that for every n � �� there exists a planar point set S� with n ver�
tices such that jTMST �S��j � jMWT �S��j � ��n�� and that for every n � ��� there exists a planar
point set S� with n vertices such that jTGST �S��j � jMWT �S��j � ��

p
n�� This appendix will show

how such point sets can be constructed� The method that is used was inspired by Levcopoulos �� �

Both examples are divided into two cases�

 More than two vertices are allowed on the same line ��the simple case��

 No two vertices are allowed to be collinear ��the nondegenerate case��

Each example assumes that there are three exterior vertices located outside the convex hull of the
given point set so that an outer convex hull is formed� The distance between an exterior vertex and
the given point set is on the same scale as the diameter of the original convex hull�

Levcopoulos and Krznaric published similar proofs for these bounds in a recent report �� �

��

v

v

L = (0,-1)

O = (0,0)

R = (n, -0.4)

U = (sin(v), cos(v))

Figure A�� The simple case�

A�� An ��n� lower bound for the nonoptimality of the MST�

triangulation

The simple case �More than two vertices are allowed on the same line��

Let S be the set of n �� �� vertices with the following coordinates �see Figure A���

Right vertex� R � �n������
Lowest vertex� L � ������
Crowd vertices� A total of n� 	 vertices evenly distributed along the line segment

between O � ��� �� and U � �sin�v�� cos�v��� where v � arctan����
n
��

The line segment between O and U is called the crowd line�
The line segment between O and R is called the blocking line�

jURj �p�n � sin�v��� � ������ cos�v��� �
p
n� � 	n sin�v� � ��� cos�v� � ��� � ��n�

jORj �p�n � ��� � ������ ��� �
p
n� � ��� � ��n�

jLRj �
p

�n� ��� � ������ ������ �
p
n� � ��� � ��n�

The length of the convex hull of S is
jCH�S�j � jOLj� jOU j� jURj� jLRj � ���� � ���� � ��n� � ��n� � ��n�

��

U

R

L

O O

R

L

U

(a) (b)

Figure A��� �a� TMST �S� �b� T �S�

Since the blocking line is perpendicular to the crowd line� and ���� is closer to � than to �� the
blocking line has to belong to the minimum spanning tree of S�

TMST �S� is displayed in Figure A�� �a��

jTMST �S�j � jCH�S�j� ��n����n � 	�� �� � ��n� � ��n�� � ��n��

Let T �S� be the triangulation of S obtained by drawing all possible diagonals from L to the vertices
on the crowd line and adding the convex hull of S�
T �S� is shown in Figure A�� �b��

jT �S�j � jCH�S�j� �������n � 	�� �� � ��n� � ��n� � ��n�

Thus�
jTMST �S�j
jT �S�j �

��n��

��n�
� ��n�

which means that jTMST �S�j
jMWT �S�j � ��n�

�

��

y=2n x2 2

-1

0.5

1

C

0

L

U

R

Figure A��� The nondegenerate case�

The nondegenerate case �No three vertices are allowed to be collinear��

Let S� be the set of n �� �� vertices with the following coordinates �see Figure A����

Right vertex� R � �n� �
�n � ��

Lowest vertex� L � � �p
��n ����

Crowd vertices� A total of n� 	 vertices evenly distributed along the parabola y�x� � 	n� �x�
between C � � �

�n � ��
� and U � � �p
��n � ���

Fact � CR is perpendicular to the tangent of y in point C�
This is because y��x� � �n��x �which yields y����
� � 	n�� and

y���
� � �� �

y����
�
���x �

�

	n
� �

	n�
� ��n �

�

	n
�� �

	n
� �

�

	n
� �

	n
� �

�

Next�

jCRj �
q
��n � �

�n� � �
�n�

� � ��� ��
�� �
p
n� � ��	

jLRj �
q

��n� �
�n�� �p

��n �
� � ��� ������ �

q
n� � �	�p

	� � �
p
����
�n�

Since ��	
 � 	�p
	 and � � �

p
����
�n� � we have

Fact � jCRj � jLRj �

Fact and Fact � imply that CR must belong to the minimum spanning tree of S��

��

X X
Y

L

C

U

R

Z

L

C

U

R

(a) (b)

Figure A��� �a� TMST �S
�� �b� T �S��

TMST �S�� is displayed in Figure A�� �a��

The length of the convex hull of S� is
jCH�S��j � jLCj� jCU j� jURj� jLRj � ���� � ���� � ��n� � ��n� � ��n�

which gives us

jTMST �S��j � jCH�S��j�
Wz �� 	

������n� ���jCRj�
Xz �� 	

������n �
��

Yz �� 	
��n���n � ��

� ��n� � ��n� � ��n� � ��n� � ��n��
� ��n��

where W corresponds to the set of diagonals on the parabola y between C and U � and X and Y
correspond to the optimally triangulated areas �polygons� shown in Figure A�� �a��

As a comparison� let T �S�� be the triangulation consisting of the convex hull of S�� all diago�
nals between L and crowd vertices� and the same triangulation of area X as in TMST �
See Figure A�� �b��

jT �S��j � jCH�S��j�
Wz �� 	

������n � ���jLU j�
Xz �� 	

������n�
��

Zz �� 	
������n � ��

� ��n� � ���� � ��n� � ��n� � ��n�
� ��n�

Thus�
jTMST �S��j
jT �S��j �

��n��

��n�
� ��n�

which means that
jTMST �S��j
jMWT �S��j � ��n�

�

��

O = (0,0)

-1

-2

L = (0 , - n)

C = (3 sin(v), 3 cos(v))

B = (sin(v), cos(v))

R = (n , 0)

U = (4 sin(v), 4 cos(v))

v

v

Figure A��� The simple case�

A�� An ��
p
n� lower bound for the nonoptimality of the

GST�triangulation

The simple case �More than two vertices are allowed on the same line��

Let S be the set of n �� ��� vertices with the following coordinates �see Figure A����

Blocking vertex� B � �sin�v�� cos�v��
Right vertex� R � �

p
n� ��

Crowd vertices� A total of n� dpn e � � vertices evenly distributed along the line segment
between C � �� sin�v�� � cos�v�� and U � �� sin�v�� � cos�v���
where sin�v� � 	p

n
�

Pulling vertices� A total of dpn e � � vertices with integer coordinates distributed along
the negative y�axis between O � ��� �� and L � ����dpn e��

We start out by observing that jBRj � jCLj since

jBRj �
p
�
p
n� sin�v��� � ��� cos�v��� �

p
n�

jCLj �
p

��� � sin�v��� � ��dpn e � � cos�v��� �

r
dpn e� � dpn e

q
�� �

n
� �

and

n�
 � n�
p
n� � � � � n �

dpn ep
n

p
n� � � � � dpn e� � dpn e

r
�� �

n
� �

In other words� BR will be selected before CL in a greedy triangulation�
Furthermore� any diagonal from C to a pulling vertex will be blocked because of B� �Assume that
the diagonal from B to the pulling vertex at ����j� has just been selected� When choosing between
the diagonal from C to the pulling vertex at ����j� and the diagonal from B to the pulling vertex
at ����j � ��� the latter will be picked since it is shorter��

GT �S� is displayed in Figure A�� �a��

��

R

B

C

O

U

L

R

B

C

O

U

L
(a) (b)

Figure A��� �a� GT �S� �b� Sp�S�

Let Sp�S� be a spanning tree for S of shortest possible length made exclusively from edges that
belong to GT �S�� It is easy to see that it will consist of the diagonals between adjacent pulling
vertices� OB� BC � and the diagonals between adjacent crowd vertices� But how is R connected#

Consider the line segment CR� It is perpendicular to OU � so none of the crowd vertices� vertex B�
or vertex O are closer to R than C is� Next� since OR � OL� the length of LR is greater than that
of OR and therefore also greater than jCRj� So� CR will belong to Sp�S��

Sp�S� is shown in Figure A�� �b��

TGST �S� is obtained from Sp�S� by adding the missing pieces of the convex hull of S and then
optimally triangulating the induced polygons�
See Figure A�� �a��

The length of the convex hull of S is
jCH�S�j � jOLj� jOU j� jURj� jLRj � ��

p
n� � ���� � ��

p
n� � ��

p
n� � ��

p
n�

which means that

jTGST �S�j � jCH�S�j� jBRj�
Wz �� 	

��
p
n��dpn e�

Xz �� 	
��
p
n���n � dpn e � ��

� ��
p
n� � ��

p
n� � ��n� � ��n

p
n�

� ��n
p
n�

where W and X correspond to the optimally triangulated areas shown in Figure A�� �a��

�

(b)

R

B

C

O

U

L

Y

Z

(a)

W

X

R

B

C

O

U

L

Figure A��� �a� TGST �S� �b� T �S�

Let T �S� be the triangulation of S obtained by starting with the convex hull of S and then drawing
the diagonal between ������ and B �call it d�� all the diagonals from crowd vertices to ������� and
�nally all the diagonals from pulling vertices to U �
T �S� is shown in Figure A�� �b��

jT �S�j � jCH�S�j� jdj�
Yz �� 	

������n� dpn e � ���

Zz �� 	
��
p
n���dpn e � ��

� ��
p
n� � ���� � ��n� � ��n�

� ��n�

Thus�
jTGST �S�j
jT �S�j �

��n
p
n�

��n�
� ��

p
n�

which means that jTGST �S�j
jMWT �S�j � ��

p
n�

�

��

- n

n

18
R = (n + , 0)

n

12 3U = (,4)

n

6 3L = (, - n)

n

6 3B = (,1)

n

18C = (,3)

108
n n 2y = - x2

n

108
2y = x

1

O = (0,0)

-4

1

3

4

P

- n

Figure A��� The nondegenerate case�

The nondegenerate case �No three vertices are allowed to be collinear��

Let S� be the set of n �� ��� vertices with the following coordinates �see Figure A����

Origin vertex� O � ��� ��

Blocking vertex� B � ��
p
	p
n
� ��

Right vertex� R � �n� ��p
n
� ��

Crowd vertices� A total of n� dpn e vertices evenly distributed along

the parabola y��x� � n
��� �x� between C � � ��p

n
� �� and U � ���

p
	p
n
� ���

Pulling vertices� A total of dpn e � � vertices located on the parabola y��x� � �n
p
n

��� �x��
Let their y�coordinates be all the integers between �� �at P � and bpn c�
If
p
n �� bpn c� place an extra vertex in y � �pn�

The vertex in ��
p
	p
n
��pn� has the lowest y�coordinate� and is called L�

Note that B and L have the same x�coordinate�

Fact � CR is perpendicular to the tangent of y� in point C�
This is because y���x� �

n
�� �x �which means y���

��p
n
� �

p
n
	 � and

y��
��p
n
� � �� �

y���
��p
n
�
���x � �� �p

n
� ��pn�

��p
n
�� ��p

n
� � �� � � �

�

��

Fact � jBRj � jCLj

Proof

jBRj �
q
��
p
n� ��p

n
�� �

p
	p
n
�� � �� � ��� �

q
n�
�	����

p
	n
������

p
	

n

jCLj �
q

��
p
	p
n
� ��p

n
�� � ��pn � ��� �

q
n�
�n

p
n
�n
������

p
	

n

and ���� �	
p
��n � n

p
n� �n since the inequality �����

p
	

� �
p
n is always satis�ed �recall that

we decided to set n � ����

Thus� jBRj � jCLj� �

Fact � Let P�k be the pulling vertex with y�coordinate �k�
For every integer k� where � � k �

p
n � �� the diagonal between B and the pulling vertex

called P�k�� is shorter than the diagonal between R and P�k�

Proof

jP�k�� Bj �
r

��
p
	p
n
�
p
����k
�

n���
�� � ��� ��k � ����

�

q
��
�k
k�n���
���n�������

p
k
��n���
����k
�

n���

jP�k Rj �
q

��
p
n� ��p

n
��

p
���k
n���

�� � ��� ��k���

�

q
n���
�	�
k�n������

p
	
p
k�n���
	��n�������

p
	
p
k�n���
���k

n���

First of all� n � �� gives us

�
�
n��� � �n� � �

��	� �	
p
��n	�� � ���p

��	��n��� � �
	�n���� ��� � �

This means that

n��� � �n� � ��	� �	
p
��n	�� � ���

p
��	��n��� � 	�n���� ��� � �

which is the same as saying

�n� � �	
p
�n	�� � 	�

p
��n��� � ��� � n��� � �	n	�� � 	�n��� � 	�n���

Since k �
p
n and

p
k � � � �� we get

�k �n	��� �	
p
�
p
k�n��� � 	�

p
�
p
k�n��� � ��� � n��� � �	n	�� � 	�n���� 	�

p
k � ��n���

Further rearrangements lead to the relation

�� � �k � k��n	�� � ���n��� � 	�
p
k � � � n��� � ����k� ��

� n��� � �� � k��n	�� � �	
p
�
p
k � n��� � �	�n���� 	�

p
�
p
k � n��� � ���k

Putting everything together yields jP�k�� Bj � jP�k Rj� �

��

O

L

R

U

P

B

C

(a)

O

L

R

U

(b)

B

P

C

Figure A��� �a� GT �S�� �b� Sp�S��

Fact � jOP j � jBP j

Proof

jOP j �
r

�
q

�����
n���

� ��� � ���� ��� �
q

��n���
�	�
n���

jBP j �
r

�
q

�����
n���

� �
p
	p
n
�� � ���� ��� �

q
��n���
���n�����	�n���
�	�

n���

We note that ��	 � ��n� ����n��� because n � ���
It then follows that � � �n	������n������	n���� and �nally �n	�� � 	
n	������n������	n����

Therefore� jOP j � jBP j� �

Facts � �� �� and � cause the greedy triangulation of S� to look like Figure A�� �a� and the
spanning tree of minimal length consisting of greedy edges to look like Figure A�� �b��

��

2Q

Q1

2Q

Q1

(a)

W

X

(b)

Y

Z

Figure A��� �a� TGST �S�� �b� T �S��

Just like before� TGST �S�� is obtained from Sp�S�� by adding the missing pieces of the convex hull
of S and then optimally triangulating the induced polygons�
See Figure A�� �a��

Let Q� be the convex polygon whose edges are OU and the diagonals between consecutive vertices
on y�� Similarly� let Q� be the convex polygon whose edges are OL and the diagonals between
consecutive vertices on y�� According to ��� � any convex polygon with n vertices �where no three
are collinear� and perimeter of length p can be triangulated by inserting diagonals of total length
O�p log�n��� Using this fact� we can set jQ�j � O���log�n�� � O�log�n�� and jQ�j � O�

p
n � log�n���

where jQ�j and jQ�j denote the total lengths of all inserted diagonals in two suitable triangulations
of Q� and Q�� respectively�

The length of the convex hull of S� is
jCH�S��j � jOLj� jOU j� jURj� jLRj � ��

p
n� � ���� � ��

p
n� � ��

p
n� � ��

p
n�

which gives us

jTGST �S��j � jCH�S��j�
D�z �� 	

������n� dpn e � ���

D�z �� 	
������dpn e � ���jQ�j� jQ�j� jBRj

�

Wz �� 	
��
p
n���n� dpn e � ���

Xz �� 	
��
p
n���dpn e � ��

� ��
p
n� � ��n� � ��n� � O�log�n�� �O�

p
n � log�n�� � ��

p
n� � ��n

p
n� � ��n�

� ��n
p
n�

D� corresponds to the set of diagonals between consecutive vertices on y�� and D� to the set of
diagonals on y��
W represents the set of diagonals from the crowd vertices to R� and X the set of diagonals from
the pulling vertices to B�
W and X are marked in Figure A�� �a��

��

Let T �S�� be the triangulation of S� shown in Figure A�� �b��

All crowd vertices are connected to P by the set of diagonals labelled Y in the �gure�
Such a construction is possible since no diagonal from a crowd vertex to P crosses y��

Proof The tangent of y� in U �whose equation is y � �
�

p
�n �x� �� crosses y� above y � �� since

they intersect in a point with the coordinates

�xc� yc� � �
�	
p
�

n
� ��� �

p
� � n���� �

�p
n
� ��� �

p
� � n���� � ��

and

yc � � �p
n
�

�p
n
�
q

� �
p
n� � � � �p

n
�

�p
n
�
p
�� � � ���

Area Z in the �gure consists of diagonals from the pulling vertices to U �

Finally� we have

jT �S��j � jCH�S��j�
D�z �� 	

������n � dpn e� ���

D�z �� 	
������dpn e � ���jQ�j� jQ�j� jBP j

�

Yz �� 	
������n � dpn e��

Zz �� 	
��
p
n���dpn e � ��

� ��
p
n� � ��n� � ��n� � O�log�n�� �O�

p
n � log�n�� � ���� � ��n� � ��n�

� ��n�

Thus�
jTGST �S��j
jT �S��j �

��n
p
n�

��n�
� ��

p
n�

which means that jTGST �S��j
jMWT �S��j � ��

p
n�

�

��

��

Bibliography

	�� M� Ajtai
 V� Chv�tal
 M� M� Newborn
 E� Szemer�di� �Crossing�Free Subgraphs��

Annals of Discrete Mathematics �� ������
 pages �����

	�� G� Blom� Sannolikhetsteori med till�mpningar� Studentlitteratur
 Lund �������

	�� S� Cook
 C� Dwork
 R� Reischuk� �Upper and Lower Time Bounds for Parallel

Random Access Machines Without Simultaneous Writes�� SIAM Journal on

Computing ����� ������
 pages ������

	�� T� Cormen
 C� Leiserson
 R� Rivest� Introduction to Algorithms� The MIT Press

�������

	�� M� T� Dickerson
 R� L� S� Drysdale
 S� A� McElfresh
 E� Welzl� �Fast greedy

triangulation algorithms�� Proc� of the Tenth ACM Symp� on Computational

Geometry ������
 pages ��������

	�� Z� Galil
 K� Park� �Parallel Algorithms for Dynamic Programming Recurrences

with More Than O��� Dependency�� Journal of Parallel and Distributed

Computing �� ������
 pages ��������

	�� P� D� Gilbert� �New Results in Planar Triangulations�� M�S� Thesis

Coordinated Science Lab�
 University of Illinois at Urbana �������

	�� S� Goldman� �A Space Efficient Greedy Triangulation Algorithm�� Information

Processing Letters 	� ������
 pages ��������

	�� R� Grimaldi� Discrete and Combinatorial Mathematics
 An Applied Introduction�

Addison�Wesley Publishing Company �������

	��� L� Heath
 S� Pemmaraju� �New Results for the Minimum Weight Triangulation

Problem�� Algorithmica �� ������
 pages ��������

	��� R� Karp
 V� Ramachandran� �Parallel algorithms for shared�memory machines��

Algorithms and Complexity� Elsevier Science Publishers B�V� ������

pages ��������

	��� D� C� Kozen� The Design and Analysis of Algorithms� Springer�Verlag �������

	��� C� Levcopoulos� �An ��
p
n� Lower Bound for the Nonoptimality of the Greedy

Triangulation�� Information Processing Letters �� ������
 pages ��������

	��� C� Levcopoulos
 D� Krznaric� �The Greedy Triangulation Can Be Computed from

the Delaunay in Linear Time�� Technical Report LU�CS�TR�������
 Department of

Computer Science
 Lund University �������

	��� C� Levcopoulos
 D� Krznaric� �Tight Lower Bounds for Minimum Weight

Triangulation Heuristics�� Technical Report LU�CS�TR�������
 Department of

Computer Science
 Lund University �������

	��� C� Levcopoulos
 A� Lingas� �On Approximation Behavior of the Greedy

Triangulation for Convex Polygons�� Algorithmica � ������
 pages ��������

��

	��� C� Levcopoulos
 A� Lingas� �Fast Algorithms for Greedy Triangulation�� BIT 	�

������
 pages ��������

	��� C� Levcopoulos
 A� Lingas� �The Greedy Triangulation Approximates the

Minimum Weight Triangulation and Can Be Computed in Linear Time in the Average

Case�� Technical Report LU�CS�TR�������
 Department of Computer Science
 Lund

University �������

	��� C� Levcopoulos
 A� Lingas
 C� Wang� �On Parallel Complexity of Planar

Triangulations�� �������

	��� A� Lingas� �A Linear�Time Heuristic for Minimum Weight Triangulations of

Convex Polygons�� Proc� �	rd Allerton Conf� on Computing� Communication� and

Control� Urbana� Illinois �������

	��� A� Lingas� �A New Heuristic for Minimum Weight Triangulation�� SIAM Journal

of Algebraic and Discrete Methods � ������
 pages ��������

	��� A� Lingas� �Greedy Triangulation Can Be Efficiently Implemented in the

Average Case�� Proceedings of GraphTheoretic Concepts in Computer Science

������
 pages ��������

	��� R� Lipton
 R� E� Tarjan� �Applications of a planar separator theorem�� Proc�

��th Conf� Foundations of Computer Science ������
 pages ��������

	��� G� K� Manacher
 A� L� Zobrist� �Neither the Greedy nor the Delaunay

Triangulation of a Planar Point Set Approximates the Optimal Triangulation��

Information Processing Letters � ������
 pages ������

	��� S� K� Park
 K� W� Miller� �Random Number Generators� Good Ones are

Hard to Find�� Communications of the ACM ������
 Volume ��
 Number ��

pages ����������

	��� D� A� Plaisted
 J� Hong� �A Heuristic Triangulation Algorithm�� Journal of

Algorithms � ������
 pages ��������

	��� F� P� Preparata
 M� I� Shamos� Computational Geometry
 An Introduction�

Springer�Verlag �������

	��� W� Rytter� �On Efficient Parallel Computations for Some Dynamic Programming

Problems�� Theoretical Computer Science �� ������
 pages ��������

	��� W� D� Smith� �Studies in Computational Geometry Motivated by Mesh

Generation�� Ph�D� Thesis
 Princeton University �������

	��� T��S� Tan� �Optimal Two�Dimensional Triangulations�� Department of Computer

Science
 University of Illinois at Urbana�Champaign �������

	��� C� Wang
 L� Schubert� �An Optimal Algorithm for Constructing the Delaunay

Triangulation of a Set of Line Segments�� Proceedings of the Third Annual ACM

Symposium on Computational Geometry ������
 pages ��������

��

