
- 28 -

98, 1991, pp. 31-35.

[To3] Toussaint, G. T., “New results in computational geometry relevant to pattern recognition
in practice,” in Pattern Recognition in Practice II, E. S. Gelsema and L. N. Kanal, Edi-
tors, North-Holland, 1986, pp.135-146.

[To4] Toussaint, G. T., Editor, Computational Morphology, North-Holland, 1988.

[TV] Tarjan, R. E. and Van Wyk, C. J., “An O(n log log n)-time algorithm for triangulating
simple polygons,” SIAM Journal on Computing, vol. 17, 1988, pp. 143-178.

[WS] Woo, T. C. and Shin, S. Y., “A linear time algorithm for triangulating a point-visible
polygon,” ACM Transactions on Graphics, vol. 4, January 1985, pp.60-70.

[YTT] Yashiro, H., Takahashi, T. and Takikawa, K., “An O(n(1+to)) algorithm for a simple

polygon triangulation and its evaluation,” IEICE Tech. Rept., PRU-89-41, September
1989.

- 27 -

with simple data structures,” ACM Symposium on Computational Geometry, Berkeley,
California, June 6-8, 1990, vol. 6, pp. 34-43.

[Kn1] Knopp, K., Theory of Functions, Part I, translated by F. Bagemihl from the fifth German
Edition, Dover, New York, 1945.

[Kn2] Knopp, K., Funktionentheorie I., Sammlung Göschen Band 668, Walter de Gruyter,
1970.

[LC] Lee, S. H. and Chwa, K. Y., “A new triangulation linear class of simple polygons,” Inter-
national Journal of Computer Mathematics, vol. 22, 1987, pp.135-147.

[Le] Lennes, N. J., “Theorems on the simple finite polygon and polyhedron,” American Jour-
nal of Mathematics, vol. 33, 1911, pp.37-62.

[Le1] Levy, L. S., Geometry: Modern Mathematics via the Euclidean Plane, Prindle, Weber &
Schmidt, Inc., Boston, Mass., 1970.]

[Ma] Mandelbrot, B. B., Fractals: Form, Chance, and Dimension, W. H. Freeman & Co., San
Francisco, 1977.

[Me] Meisters, G. H., “Polygons have ears,” American Mathematical Monthly, vol. 82, June/
July 1975, pp.648-651.

[RS] Rupert, J. and Seidel, R., “On the difficulty of tetrahedralizing 3-dimensional non-convex
polyhedra,” ACM Symposium on Computational Geometry, vol. 5, June 5-7 1989, Saar-
brucken, West Germany, pp. 380-392.

[SV] Schoone, A. A. and van Leeuwen, J., “Triangulating a star-shaped polygon,” Tech. Re-
port, RUV-CS-80-3, University of Utrecht, April 1980.

[Sh1] Shermer, T., “Computing bushy and thin triangulations,” in Snapshots of Computational
and Discrete Geometry, G. T. Toussaint, Ed., Tech. Rept. SOCS-88.11, June 1988, pp.
119-133.

[Sh2] Shermer, T., “Generating anthropomorphic k-spirals,” in Snapshots of Computational
and Discrete Geometry, G. T. Toussaint, Ed., Tech. Rept. SOCS-88.11, June 1988, pp.
233-244.

[TA] Toussaint, G. T. and Avis, D., “On a convex hull algorithm for polygons and its applica-
tion to triangulation problems,” Pattern Recognition, vol. 15, No. 1, 1982, pp.23-29.

[To1] Toussaint, G. T., “A new linear algorithm for triangulating monotone polygons,” Pattern
Recognition Letters, vol. 2, March 1984, pp. 155-158.

[To2] Toussaint, G. T., “Anthropomorphic polygons,” American Mathematical Monthly, vol.

- 26 -

[CI] Chazelle, B. and Incerpi, J., “Triangulation and shape complexity,” ACM Transactions
on Graphics, vol. 3, 1984, pp.135-152.

[El] ElGindy, H. A., “A linear algorithm for triangulating weakly externally visible poly-
gons,” Tech. Report MS-CIS-86-75, University of Pennsylvania, September 1985.

[ET1] ElGindy, H. and Toussaint, G. T., “On triangulating palm polygons in linear time,” Proc.
Computer Graphics International’88, Geneva, May 24-27, 1988, pp. 308-317.

[ET2] ElGindy, H. and Toussaint, G. T., “On geodesic properties of polygons relevant to linear-
time triangulation,” The Visual Computer, vol. 5, no. 1/2, March 1989, pp. 68-74.

[EAT] ElGindy, H., Avis, D. and Toussaint, G. T., “Applications of a two-dimensional hidden-
line algorithm to other geometric problems,” Computing, vol. 31, 1983, pp.191-202.

[EET] ElGindy, H., Everett, H. and Toussaint, G. T., “Slicing an ear in linear time,” to appear
in Pattern Recognition Letters.

[FM] Fournier, A. and Montuno, D. Y., “Triangulating simple polygons and equivalent prob-
lems,” ACM Transactions on Graphics, vol. 3, April 1984, pp.153-174.

[FP] Feng, H-Y. F. and Pavlidis, T., “Decomposition of polygons into simpler components:
feature generation for syntactic pattern recognition,” IEEE Transactions on Computers,
vol. C-24, June 1975, pp.636-650.

[Fo] Forder, H. G., The Foundations of Euclidean Geometry, Cambridge University Press,
1927.

[GJPT] Garey, M. R., Johnson, D. S., Preparata, F. P. and Tarjan, R. E., “Triangulating a simple
polygon,” Information Processing Letters, vol. 7, 1978, pp.175-179.

[Gr] Graham, R. L., “An efficient algorithm for determining the convex hull of a finite planar
set,” Info. Proc. Lett. 1 (1972), 132-133.

[HM] Hertel, S. and Mehlhorn, K., “Fast triangulation of simple polygons,” Proc. FCT, LNCS
158, 1983, pp.207-215.

[Ho] Ho, W.-C., “Decomposition of a polygon into triangles,” The Mathematical Gazette, vol.
59, 1975, pp.132-134.

[Hon] Honsberger, R., Ingenuity in Mathematics, Random House, Inc., 1970.

KET] Kong, X., Everett, H. and Toussaint, G. T., “The Graham scan triangulates simple poly-
gons,” Pattern Recognition Letters, in press.

[KKT] Kirkpatrick, D. G., Klawe, M. M., & Tarjan, R. E., “O(n log log n) polygon triangulation

- 25 -

In this appendix we describe the prune and search algorithm for finding an ear in linear
time. The recursive function FindAnEar takes as input a good subpolygon and a vertex. Initially
we call FindAnEar with the simple polygon P and any vertex of P.

ALGORITHM FindAnEar(GSP,xi). Given a good subpolygon GSP of a polygon P and a vertex

xi of GSP this algorithm reports a proper ear.

1. If xi is an ear report it and exit.

2. Find a vertex xj such that (xi,xj) is a diagonal of GSP. Let GSP′ be the good subpolygon

of GSP formed by (xi,xj). Relabel the vertices of GSP′ so that xi=x0 and xj=xk-1 (or xj
= x0 and xi = xk-1 as appropriate) where k is the number of vertices of GSP′.

3. FindAnEar(GSP′, ⎣k/2⎦)).

END FindAnEar

8. References

[Ca] Cairns, S. S., “An elementary proof of the Jordan-Schoenflies theorem, Proc. Amer.
Math. Soc., vol. 2, 1951, pp.860-867.

[Ch1] Chazelle, B., “A theorem on polygon cutting with applications,” Proc. 23rd IEEE Sym-
posium on Foundations of Computer Science, Chicago, November 1982, pp. 339-349.

[Ch1] Chazelle, B., “Triangulating a simple polygon in linear time,” Technical Report CS-TR-
264-90, Dept. of Computer Science, Princeton University, May 1990.

Type of Polygon Sleeve Searching Sinuosity
Algorithm Algorithm
O(n(1+t0)) O(n log s)

Convex O(n) O(n)

Anthropomorphic O(n) O(n log n)
& Two-Ear polygons
Edge-visible O(n2) † O(n log n)

Table 1: A comparison of the sleeve-searching algorithm with the sinuosity algorithm of
Chazelle & Incerpi in terms of worst-case complexity for some classes of polygons.
† Edge-visible polygons can be triangulated in O(n) time with the algorithm in [TA].

- 24 -

its dependence on the triangulation by taking the extreme values of t0 over all triangulations of the

given polygon. Accordingly we define two new measures of the shape of a polygon: Tmax =

max{t0} and Tmin = min{t0}, where maximization and minimization is carried out over all trian-

gulations. Thomas Shermer [Sh1] has shown that for a given polygon P, Tmax and a triangulation

exhibiting Tmax can be computed in O(T(n)) time where T(n) is the time taken to obtain any trian-

gulation of P. He has also shown that Tmin can be computed in O(n3) time and O(n2) space. It

would be interesting to determine how useful both measures are in pattern recognition applications
and other areas of computational morphology [To4] as well as to determine if a sub-cubic time or
sub-quadratic space algorithm exists for computing Tmin.

6. Acknowledgments

The author would like to thank Hossam ElGindy, Tom Shermer, and Rafe Wenger for
stimulating and helpful discussions on this topic as well as Tokiichiro Takahashi of NTT, Japan
for pointing out some ambiguities in an earlier draft of this paper as well as his comments on the
implementation of the algorithm.

7. Appendix

d

Fig. 12: Case 2.4.2: The vertices xi+1 and xj-1 do not re-enter the
triangulated sleeve and neither does the chain CH[xi+1,..., xj-1].

dij

xi

xj

xi+1

xi-1

xj+1

xj-1

xk
xk*

- 23 -

which approach is more viable. To assist the programmer interested in this prune and search ear-
finding procedure we list it in the Appendix. For a proof of correctness and a complexity analysis
the reader is referred to [EET].

On the theoretical side it is interesting to compare the new “sleeve-searching” algorithm
proposed here with the only other known adaptive algorithm that is sensitive to the input shape,
i.e., the “sinuosity” algorithm of Chazelle & Incerpi [CI]. In particular it is of interest to compare
these two algorithms from the point of view of worst-case complexity for certain known classes of
simple polygons. Table 1 summarizes the worst-case complexities of both algorithms for convex,
anthropomorphic and edge-visible polygons. Note that although t0 can be as large as O(n) for con-

vex polygons as illustrated in Fig. 4 (a) the algorithm described here will always obtain a value of
t0=0, and hence the complexity on convex polygons is O(n) thus matching the complexity of the

sinuosity algorithm. For anthropomorphic polygons “sleeve-searching” is better than “sinuosity”
because t0=0 whereas s=O(n). For edge-visible polygons on the other hand the latter is better al-

though a linear-time algorithm exists [TA].

Measures of the shape of a polygon are of great interest in pattern recognition and compu-
tational morphology [To4]. While t0 may vary too much as a function of the triangulation of a

polygon rather than the polygon’s shape in order to be a faithful measure of shape, we can remove

dab

Fig. 11: Case 2.4.1: Neither xi+1 nor xj-1 re-enter the triangulated

sleeve TS[dab, dij] but the chain CH[xi+1,..., xj-1] does.

dij

xi

xj

xi+1

xi-1

xj+1

xj-1

xa

xb

- 22 -

O(n(1+t0)) time.

Proof: Since the correctness and linear time complexity of Step 1 of ALGORITHM TRIANGU-
LATION follows from PROCEDURE DIAGONAL and Lemma 1 we need only concern our-
selves with PROCEDURE TRIANGULATION. Steps 1, 2 and 1.1 can be done in constant time.
The correctness of Step 1.2 (a) follows from Lemma 4 and can be implemented by scanning simul-
taneously the chain CH[xi+1,...,xj-1] and the triangulated sleeve TS[dab,dij]. Since the diagonals in

TS[dab,dij] are ordered, so are the triangles penetrated by CH[xi+1,..., xj-1]. Thus if we keep point-

ers between adjacent triangles as TS[dab,dij] is formed we can easily search for the deepest triangle

whenever we have to by advancing either an edge along CH[xi+1,..., xj-1] if the previous edge does

not intersect the following diagonal in TS[dab, dij] or advancing a diagonal in TS[dab,dij] as long

as it is intersected by the same edge of CH[xi+1,...,xj-1]. The complexity of this procedure is pro-

portional to the sum of the cardinalities of CH[xi+1,...,xj-1] and TS[dab,dij] and in the worst case is

O(n).

Consider Step 1.2 (c) and refer to the discussion preceding Lemma 5. We can assume that
xj-1 ∉ int Δ xixjxi-1 whenever this step is executed because initially dij is a diagonal of T(P) and

subsequently if this condition were not true it would imply that at the previous diagonal insertion
of di-1,j, xj-1 ∈ int Δ xjxi-1xi thus contradicting the choice of diagonal [xi-1,xj-1] that Step 1.6 would

have made. It follows that Lemma 5 implies that Step 1.2 (c) is correct and can be implemented
in O(n) time.

The correctness of Steps 1.3 - 1.8 follow straightforwardly from Lemmas 6 and 7 and can
each be performed in O(1) time. The arguments for the correctness and complexity of Steps 1.9
and 1.10 are similar to those for Steps 1.1 and 1.2. Finally, Lemmas 2 and 3 ensure the correctness
and linear time complexity of Step 1.11.

Every time a diagonal is selected from D in the outer While loop it is possible to do a linear
amount of work, in the worst case, only in Steps 1.2, 1.10, and 1.11. All other steps require no
more than a O(1) time per step. Furthermore, every time a linear amount of work is done in Steps
1.2, 1.10, and 1.11 a free triangle is inserted in T(P) and two diagonals are inserted in D. Since the
only time a pair of diagonals is inserted in D is precisely when a free triangle is inserted in T(P) the
outer While loop is executed only t0 times, where t0 denotes the number of free triangles in the

triangulation delivered by the algorithm. It follows that the overall complexity of the algorithm is
O(n) + O(nt0). Q.E.D.

5. Concluding Remarks

Concerning the practical issues we remark that the algorithm proposed here has already
been implemented by researchers at NTT in Japan for graphics applications and the reader is re-
ferred to [YTT] for experimental results. We also remark that a more elegant and perhaps faster
implementation of the algorithm proposed here is possible with the recent result of ElGindy, Eve-
rett & Toussaint [EET] mentioned in the introduction. In the algorithm presented in the present
paper a diagonal is first found which decomposes P into two subpolygons. PROCEDURE TRIAN-
GULATION is subsequently called twice and applied to each of the two subpolygons. In [EET] it
is shown that an ear of P can be found in linear time by a quick prune and search procedure. Thus
using the ear-finding procedure of [EET] in Step 1 of ALGORITHM TRIANGULATION affords
only one call to PROCEDURE TRIANGULATION. It remains to be determined experimentally

- 21 -

1.4 If xj-1,xj,xi is a left turn and xi+1,xi,xj is a left turn (Case 2.2 in Fig. 10) then apend

[xj-1,xi] into TS[dab,dij] to create TS[dab,di,j-1]; j ← j-1 and go to 1.1.

1.5 If xj-1,xj,xi is a left turn and xi+1,xi,xj is a right turn (Case 2.3 in Fig. 10) then:

1.6 If xj-1 ∈ int Δ xi+1xixj (Case 2.3.1 in Fig. 10) then apend [xj-1,xi] into TS[dab,dij]

to create TS[dab,di,j-1]; j ← j-1 and go to 1.1.

1.7 If xi+1 ∈ int Δ xixjxj-1 (Case 2.3.2 in Fig. 10) then apend [xj,xi+1] into

TS[dab,dij] to create TS[dab,di+1,j]; i ← i+1 and go to 1.1.

1.8 If xi+1 ∉ int Δ xixjxj-1 and xj-1 ∉ int Δ xi+1xixj (Case 2.3.3 in Fig. 10) then ar-

bitrarily select for appending either (a) [xj,xi+1] or (b) [xj-1,xi] into TS[dab,dij].

If (a) is chosen then i ← i+1; If (b) is chosen then j ← j-1. Go to 1.1.

1.9 If xj-1,xj,xi is a right turn and xi+1,xi,xj is a left turn (Case 2.4 in Fig. 10) then:

1.10 If CH[xi+1,...,xj-1] intersects dij (Case 2.4.1 in Fig. 10) then (a) determine the

deepest triangle Δ xrxsxt in TS[dab,dij] (see Fig. 11) that contains vertices of

CH[xi+1,...,xj-1]; (b) determine which vertex xk of CH[xi+1,...,xj-1] is visible to

both xr and xs; (c) insert diagonals dsk=[xs,xk] and dkr=[xk,xr] into T(P) and D;

(d) delete all the diagonals in TS[dab,dij] starting from and including dij and

ending with and including dtr, insert all the diagonals remaining in TS[dab,dij]

into T(P) and Exit.

1.11 Else (Case 2.4.2 in Fig. 10) (a) find a vertex xk of CH[xi+1,...,xj-1] that is visible

from xi and that lies to the right of the directed line through xi and xj (see Fig.

12). (b) If xk is also visible from xj then insert diagonals dik=[xi,xk] and

dkj=[xk,xj] into T(P) and D and Exit. Else (c) find the vertex xk* ∈ CH[xk,...,

xj] that lies in the interior of Δ xixkxj and that minimizes the angle ∠ xk*xjxi;

insert diagonals dik* =[xi,xk*] and dk*j =[xk*,xj] into T(P) and D.

End While

End While

End

Theorem: ALGORITHM TRIANGULATION triangulates a simple polygon P of n vertices in

- 20 -

Case 1 Case 2

Case 2.1 Case 2.2 Case 2.3 Case 2.4

Case 2.3.1 Case 2.3.2 Case 2.3.3

The Case Structure in the Triangulation-Phase

Case 2.4.1 Case 2.4.2

j

j-1

i+1

j
j-1

i+1

j-1
j

j
j

i+1 i+1 i+1

j-1 j-1

j

i+1

j-1j j-1

j-1

ji+1

i+1

j-1

j

i+1

j-1

j

i+1

[xi,xi+1] ∉ Wedge[xixjxi-1]

 OR
[xj,xj-1] ∉ Wedge[xjxj+1xi],

Fig. 10 The principal cases considered by the
triangulation algorithm.
Note that only one of the subcases of Case 1
is illustrated. It is of course also possible that
vertex i+1 lies outside the shaded region and
j-1 inside or that both lie inside.

i
i i i

i

i
i

i i

k

Case 1.1

Case 1.2

Case 1.3

i

- 19 -

Step 3: Triangulate CH[xj,...,xi] using PROCEDURE TRIANGULATION.

End

PROCEDURE TRIANGULATION
==

Input: A simple polygon P of n sides oriented in a counterclockwise direction along with a diagonal
dab=[xa,xb] inserted in P.

Output: Polygon P with CH[xa,...,xb] triangulated.

Comment: {D is a list of diagonals on which the algorithm iterates and is initially empty. T(P) ini-
tially consists of P and at the end of execution also contains a triangulation of CH[xa,...,xb]}

Begin

Initialization Step: D ← dab

While D is not empty Do:

1. Pick a diagonal dab=[xa,xb] from D and delete it from the list.

2. i ← a; j ← b.

While i≠j Do {triangulating a sleeve rooted at dab}

1.1 Test whether [xi,xi+1] ∈ Wedge[xixjxi-1] or [xj,xj-1] ∈ Wedge[xjxj+1xi].

1.2 If either test is violated (Case 1 in Fig. 10) then (a) determine the deepest triangle Δ
xrxsxt in TS[dab,dij] (see Fig. 9) that contains vertices of CH[xi+1,...,xj-1]; (b) deter-

mine which vertex xk of CH[xi+1,...,xj-1] is visible to both xr and xs; (c) insert diago-

nals dsk=[xs,xk] and dkr=[xk,xr] into T(P) and D; (d) delete all the diagonals in

TS[dab,dij] starting from and including dij and ending with and including dtr, insert all

the diagonals remaining in TS[dab,dij] into T(P) and Exit.

1.3. Else (Case 2 in Fig. 10) If xj-1,xj,xi is a right turn and xi+1,xi,xj is right turn (Case 2.1

in Fig. 10) then append [xi+1,xj] into TS[dab,dij] to create TS[dab,di+1,j]; i ← i+1 and

go to 1.1.

- 18 -

Fig. 9 Illustrating one of the situations in which a portion of the
triangulation already completed must be undone. A case when
either condition (A) or (B) of Lemma 4 is not satisfied.

int Δ xjxixj-1 and xj-1 ∉ int Δ xjxixi+1 then either xi+1 or xj-1 can be chosen to form the triangle with

dij. Clearly we have only a constant number of operations in the case analysis and therefore a di-

agonal can be found in O(1) time. Q.E.D.

We will now describe the triangulation algorithm in simple outline form. A decision tree
illustrating the case analysis considered by the triangulation phase of the algorithm is shown in Fig.
10. In the following TS[dab,dcd], where a<b<c<d, denotes the triangulated sleeve starting at

dab=[xa,xb] and ending at dcd=[xc,xd].}

ALGORITHM TRIANGULATION

Input: A simple polygon P of n sides oriented in a counterclockwise direction.
Output: Polygon P with n-3 diagonals inserted in P, i.e., T(P).

Begin

Step 1: Find a diagonal [xi,xj] of P using PROCEDURE DIAGONAL.

Step 2: Triangulate CH[xi,...,xj] using PROCEDURE TRIANGULATION.

xr

xs
xt

xk
dij

xi

xj

xi+1
xi-1

xj+1

xj-1

- 17 -

jacent to either of them in P, and can be identified in O(n) time.

Proof: Let the ray emanating from xr in the direction of xk intersect [xs, xt] at zk. Then, by the

definition of xk, it follows that Δ xrxszk is empty. Therefore xk is visible from both xr and xs. Since

xk must be different from xt by definition, and different from xj-1 by assumption, it follows that xk

cannot be adjacent to either xr or xs in P. Using point inclusion tests xk can be easily found in O(n)

time. Q.E.D.

We should note here that the selection of xr rather than xs as the apex from which to mea-

sure the angles ∠ xkxrxs for selecting xk is crucial. The reader can easily construct an example

similar to that of Fig. 5 (c) to show that with xs as an apex the resulting extremal vertex selected is

not necessarily visible from either xr or xs.

In the following we will make extensive use of tests between ordered triplets of vertices
xi,xj,xk and will refer to them as either left turns or right turns. Given an ordered triplet xi,xj,xk we

say that it is a left turn if xk lies to the left of the directed line through xi and xj in that order. Sim-

ilarly, we call xi,xj,xk a right turn if xk lies to the right of the directed line through xi and xj.

Lemma 6: Let [xi,xi+1] ∈ Wedge[xixjxi-1] and let [xj,xj-1] ∈ Wedge[xjxj+1xi] and define the fol-

lowing two conditions:

(a) xj-1 ∈ int Δ xjxixi+1,

(b) xi+1 ∈ int Δ xjxixj-1.

If xj-1,xj,xi is a left turn and xi+1,xi,xj is right turn then it is impossible for conditions (a) and (b) to

be satisfied simultaneously.

Proof: Assume xj-1 ∈ int Δ xjxixi+1. By convexity Δ xjxixi+1 must contain [xixj-1]. It follows

that int Δ xjxixj-1 ∈ int Δ xjxixi+1. Therefore xi+1 ∉ int Δ xjxixj-1. A similar argument applies in

the case we assume xi+1 ∈ int Δ xjxixj-1. Q.E.D.

Lemma 7: Let [xi,xi+1] ∈ Wedge[xixjxi-1] and let [xj,xj-1] ∈ Wedge[xjxj+1xi]. If xj-1,xj,xi is a left

turn or xi+1,xi,xj is a right turn then at least one of the vertices from the set {xi+1,xj-1} forms a tri-

angle with dij as base in the triangulation of the sleeve considered so far. Furthermore, such a ver-

tex can be identified in O(1) time.

Proof: Case 1: If xj-1,xj,xi is a left turn and xi+1,xi,xj is a left turn then it follows that xi+1 ∉ int Δ
xjxixj-1. Therefore xj-1 forms a valid triangle with dij. Case 2: If xj-1,xj,xi is a right turn and

xi+1,xi,xj is a right turn then it follows that xj-1 ∉ int Δ xjxixi+1. Therefore xi+1 forms a valid trian-

gle with dij. Case 3: If xj-1,xj,xi is a left turn and xi+1,xi,xj is a right turn then by Lemma 6 we have

only three subcases to consider. Sub-Case 3.1: If xi+1 ∈ int Δ xjxixj-1 then xi+1 is the desired ver-

tex. Sub-Case 3.2: If xj-1 ∈ int Δ xjxixi+1 then xj-1 is the desired vertex. Sub-Case 3.3: If xi+1 ∉

- 16 -

xu

xv

Fig. 8 The general strategy is to insert diagonals in constant time per
diagonal as long as the polygon appears to be a sleeve.

will ensure the desired outcome. Assume for the moment that the chain CH[xj,...,xi] of P has been

triangulated as a sleeve (denoted by T(CHij)) using O(1) time per diagonal insertion and that it is

discovered at the next step that either condition A ([xi,xi+1] ∈ Wedge[xixjxi-1]) or condition B

([xj,xj-1] ∈ Wedge[xjxj+1xi]) is violated and refer to Fig. 9. This implies that CH[xi,...,xj] either

intersects dij and possibly at least one other diagonal of T(CHij), does not intersect dij but possibly

at least one other diagonal of T(CHij) or it does not intersect any diagonal of T(CHij) in which case

it lies completely in the triangle of T(CHij) determined by dij. In either of the three cases it follows

that dij cannot be a diagonal of T(P) and some diagonals (at least dij) must be removed from

T(CHij). Since T(CHij) is a sleeve the diagonals, as well as the triangles they flank, are ordered.

Furthermore, since the dual of T(CHij) is a chain it follows that all but the last triangle in T(CHij)

must have precisely one of its edges as an edge of P. Let Δ xrxsxt denote the “deepest” triangle

(furthest from dij in T(CHij)) the interior of which is intersected by CH[xi,...,xj]. Without loss of

generality assume that [xs,xt] is the edge of Δ xrxsxt that is also an edge of P and that [xi-1,xi] is the

edge of Δ xi-1xixj that is also an edge of P. Therefore CH[xi,...,xj] properly intersects [xr,xt] but

does not intersect [xr,xs]. Furthermore, assume that xj-1 ∉ int Δ xixjxi-1. We now show that among

the vertices of CH[xi,...,xj] that lie in the interior of Δ xrxsxt there is at least one vertex xk that is

visible from both xr and xs and is not adjacent to either of them in P thus affording the insertion of

two permanent diagonals [xr,xk] and [xk,xs] and forming a free triangle Δ xrxsxk. Furthermore, all

this can be done in O(n) time.

Lemma 5: Let Vrs denote the set of vertices of P that lie in the interior of Δ xrxsxt and let xk ∈ Vrs

be the vertex that minimizes the angle ∠ xkxrxs. Then xk is visible from both xr and xs, is not ad-

dvu
dij

xi

xj

xi+1

xi-1

xj-1
xj+1

- 15 -

refore the polygon [xv,...,xi,xj,...,xu] has already been triangulated. Note however that all of this

triangulation may not be possible in P and a portion of it may have to be undone at some later stage
in the execution of the algorithm. Let Wedge[xixjxi-1] denote the region of the plane swept out by

a ray anchored at xi as it sweeps in a clockwise manner starting from a position colinear with xj and

ending in a position colinear with xi-1 and refer to Fig. 9. In order to add a new diagonal we test to

determine if [xi,xi+1] lies in Wedge[xixjxi-1], (we refer to this as condition A), or [xj,xj-1] lies in

Wedge[xjxj+1xi], (we refer to this as condition B). We then have the following lemmas.

Lemma 4: Let dij be a line segment joining xi to xj in P. If either condition A or condition B

(A) [xi,xi+1] ∈ Wedge[xixjxi-1],

(B) [xj,xj-1] ∈ Wedge[xjxj+1xi],

does not hold then dij cannot be a diagonal of any triangulation of P.

Proof: If both conditions (A) and (B) are violated then by the Jordan Curve Theorem it follows
that dij is an external diagonal of P or CH[xi,...,xj] intersects dij at least twice. If only one of con-

ditions (A) or (B) is exclusively true then CH[xi,...,xj] intersects dij at least once. In all three cases

dij is invalidated as a candidate for a diagonal of T(P). Q.E.D.

As we mentioned earlier, at some steps in the execution of the triangulation phase of the
algorithm it may be required to undo a portion of the triangulation constructed thus far. Such an
action involves the possibility of doing a linear amount of work and therefore, in all such situations,
we must be sure that a free triangle will be added in T(P). Lemma 5 below together with lemma 3

Fig. 7 Illustrating the proof of Lemma 2.

xi+1

xi

xi-1A By

r(xi)

H(xi-1, xi)

- 14 -

xj lies in H(xi-1,xi) and furthermore, such a diagonal can be identified in O(n) time.

Proof: Let xi be a concave vertex of P and refer to Fig. 7 for illustration. As in Lemma 1 we con-

struct a ray r(xi) that bisects the internal angle at xi and find the intersection point y of this ray with

bd(P). By construction xi and y are visible and y ∈ H(xi-1,xi). Actually in this case it is also true

that y ∈ H(xi,xi+1). Therefore if y is a vertex of P we are done. Therefore assume y lies in the

interior of some edge [A,B] of P and consider the triangle Δ yBxi. We proceed in a manner similar

to that described in the proof of Lemma 1 to look for a vertex in CH[B,...,xi-1] other than xi-1 that

is visible from xi with the added requirement that such a vertex xj not only lie in int(Δ yBxi) but

also in H(xi-1,xi). If such a vertex is found we are done. Therefore assume that no such vertex ex-

ists for CH[B,...,xi-1] and consider Δ Ayxi. We determine whether a vertex of CH[xi,...,A] lies in

int(Δ Ayxi). If not then A is visible from xi. Furthermore, since L[xi,xi-1] intersects int[A,B] it

follows that int(Δ Ayxi) ∈ H(xi-1,xi). Therefore A=xj and we have our desired diagonal. On the

other hand, if vertices of CH[xi,...,A] do lie in Δ Ayxi then we proceed as in the proof of Lemma

1 to find a vertex xj visible to xi and exit with this diagonal. It is straightforward to verify that all

the steps can be performed in O(n) time. Q.E.D.

Lemma 3: Let xi and xi-1 be two adjacent concave vertices in a simple polygon P. Then there

exists a vertex xk, k≠i,i-1 such that [xi,xk,xi-1] forms a triangle in a triangulation of P and further-

more, xk can be identified in O(n) time.

Proof: Lemma 2 implies that xi admits a diagonal of P, [xi,xk] such that xk ∈ H(xi-1,xi) and such

that xk can be found in O(n) time. If xi-1 is visible from xk we are done. If not we scan CH[xk,...,xi-

1] to determine which of its vertices lie in Δ xkxi-1xi and of these we select the vertex xk* that min-

imizes the angle ∠ xk*xi-1xi which lies in ∠ xkxi-1xi. This can be done in O(n) time. Since xi-1 is

a concave vertex it follows that xi-2 cannot lie in H(xi-1,xi) and cannot be a candidate for either xk

or xk*, thus ensuring that [xi,xk*] is not an edge of P. Therefore in either case we are guaranteed

that xk or xk* are visible from both xi and xi-1 and together they form a free triangle in some trian-

gulation of P. Q.E.D.

Any diagonal d of P partitions P into two sub-polygons P1 and P2. The triangulation algo-

rithm we will describe begins by finding a diagonal d using Procedure DIAGONAL given in sec-
tion 3 and subsequently, starting at d triangulates one of the sub-polygons in a single pass. A sec-
ond pass starting at d in the opposite direction triangulates the second sub-polygon. We will refer
to the step used to find d as the initialization phase and the subsequent steps as the triangulation
phase.

Consider for the moment that at some stage in the execution of the triangulation phase of
the algorithm, diagonal dij has been inserted between vertices xi and xj and refer to Fig. 8. Let

CH[xi,..., xj] denote the portion of the polygonal boundary of P = [x1,x2,...,xn] from xi to xj in a

counterclockwise orientation. Assume that the diagonal d added connects vertices xu and xv. The-

- 13 -

performs a “blind” search for sleeves. Initially the algorithm finds a diagonal d and proceeds to
attempt to triangulate the polygon in both directions starting from the initial diagonal assuming that
the polygon is in fact a sleeve as “viewed” from d. If it detects at some point in time that the as-
sumed sleeve it is triangulating is no longer a sleeve the algorithm backtracks undoing the triangu-
lation until the triangulated portion is a bona-fide sleeve. At this stage two new diagonals are in-
serted (identifying a triangle corresponding to a node of degree three in the dual tree of the trian-
gulation completed thus far) and the algorithm begins again recursively from these two new
diagonals which themselves will appear in the final triangulation. Before we describe the algo-
rithm in more detail we present a series of lemmas we will need to establish the correctness and
complexity of the algorithm.

It is well known and clear from Step 10 of Procedure DIAGONAL that a convex vertex of
a simple polygon P does not always admit a diagonal in T(P). Much less well known is the result
that every concave vertex on the other hand does admit a diagonal as the following lemma estab-
lishes. In fact we prove a stronger property. In the following we denote by H(xi,xi+1) the open

half-plane to the left of the directed line L[xi,xi+1]. Here L[xi,xi+1] denotes the line colinear with

xi and xi+1 and the direction is determined by orienting from xi to xi+1.

Lemma 2: Let xi be a concave vertex of a polygon P. Then P admits a diagonal [xi,xj] such that

y z’

z

xi

xj+1

xi-1

xj

xi+1

ray (xi)

Fig. 6 Illustrating Procedure DIAGONAL.

- 12 -

Step 2: Construct a ray at xi, ray(xi), that bisects the interior of ∠xi-1xixi+1.

Step 3: Find the first intersection point of ray(xi) with bd(P). Let y be the intersection point

on edge [xj,xj+1]; If y is a vertex of P, Exit with [xi,y] as the diagonal.

Step 4: Construct the triangle [xi,y,xj+1].

Step 5: For all j+1 < k < i if xk lies in triangle [xi,y,xj+1] label xk as x*k.

If there are no labeled vertices, Exit with [xi,xj+1] as the diagonal.

Step 6: For all labeled vertices compute ∠yxix*k and select that vertex (call it z)

that minimizes this angle.
If z ≠ xi-1, Exit with [xi,z] as the diagonal.

Step 7: Construct the triangle [xj,y,xi].

Step 8: For all j > k > i if xk lies in triangle [xj,y,xi] label xk as x*k.

If there are no labeled vertices, Exit with [xi,xj] as the diagonal.

Step 9: For all labeled vertices compute ∠yxix*k and select that vertex (call it w)

that minimizes this angle.
If w ≠ xi+1, Exit with [xi,w] as the diagonal.

Step 10: Exit with [xi-1,xi+1] as the diagonal.

End

Proof of Lemma 1: Procedure DIAGONAL establishes that a diagonal can always be found. The-
refore let us consider its complexity. A convex vertex can always be found in O(n) time since any
extreme vertex of P is convex. Thus it suffices to pick the vertex with maximum y coordinate for
example. Steps 2,4,7 and 10 are constant time operations. The first intersection point y in step 3
can be found in O(n) time by simply scanning all the edges of P in the order in which they occur
and testing each for intersection with ray(xi). The complexity of step 5 is clearly O(n). Its correct-

ness follows from the Jordan Curve Theorem and the fact that [xi,y] is a chord of P. The complexi-

ty of step 6 is clearly also linear and its correctness follows from the fact that by construction
int[xi,y,z’] ∩ bd(P) = ∅, where z’ is the intersection of the line colinear with [xi,z] that intersects

[xj,xj+1]. Steps 8 and 9 are similar to 5 and 6. Q.E.D.

4. The New Triangulation Algorithm

A triangulated polygon can be viewed as the “gluing” together of a set of sleeves. A sleeve
is a triangulated polygon whose dual-tree is a chain. The new algorithm proposed here in effect

- 11 -

xi v

Fig. 5 (b) The closest vertex v to xi
need not form a diagonal of P.

u

xi-1

Fig. 5 (c) The vertex u that has smal-
lest ∠xi-1xiu need not form a diagonal.

xi

xi w

Fig. 5 (d) The vertex w with the second least abscissa
after xi need not form a diagonal of P.

- 10 -

tex in int[xi-1,xi,xi+1] whose Euclidean distance to xi is smallest (vertex v in Fig. 5 (a)) and insert

diagonal [xi,v]. Recursively continue this procedure on each resulting subpolygon until each sub-

polygon thus created is a triangle. A counter-example to this algorithm is given in Fig. 5 (b).

A proof of lemma 1 appears in Knopp’s Funktionentheorie [Kn1]. During translation F.
Bagemihl discovered that the original proof was incorrect and inserted a proof of his own, also in-
correct as it turns out. Bagemihl chose the vertex p in int[xi-1,xi,xi+1] such that the ∠xi-1xi p is

smallest (vertex u in Fig. 5 (a)). A counterexample to this proof is given in Fig. 5 (c). Honsberger
gives a similar incorrect proof [Hon]. We note here that the new German edition of Funktionen-
theorie has a new proof [Kn2]. Several other incorrect proofs have also appeared. See for example
Forder [Fo] and Cairns [Ca]. Cairns chose the vertex p in int[xi-1,xi,xi+1] such that p has the second

least abscissa after xi (vertex w in Fig. 5 (a)). A counterexample to this situation is given in Fig. 5

(d). For a discussion on several correct and incorrect proofs the reader is referred to the paper by
Chung-Wu Ho [Ho]. Our proof given below is a constructive version of Levy’s proof [Le1] and
will also establish that such a diagonal can be found in O(n) time. We present it in the form of an
algorithm called PROCEDURE DIAGONAL (refer to Fig. 6).

PROCEDURE DIAGONAL

Input: A simple polygon P oriented in a counterclockwise direction.
Output: Polygon P with a diagonal inserted in P.

Begin

Step 1: Find a convex vertex xi of P.

xi

xi-1

xi+1

u

v

w

Fig. 5 (a) Illustrating some incorrect “proofs” of Lemma 1.

- 9 -

Fig. 4

(c) An anthropomorphic polygon ad-
mits many triangulations but all of them
have t0 = 0.

(d) A polygon that admits only one
triangulation and t0 = O(n).

xi

xi+1

xi+2

xi+5

xi+8

xi-1

ear ear

mouth

Consider now triangulating this polygon. A blue vertex xk is not visible from any vertex of

P non-adjacent to xk. Therefore all blue vertices are ears of P. Therefore all triangulations of P

must contain the blue vertices as ears of T(P). It remains to triangulate P* =
[xi,xi+1,xi+3,xi+4,xi+6,xi+7,...,xi-4,xi-3,xi-1]. However, all the vertices of this polygon other than xi

form a concave chain and thus the only way to triangulate P* is to join xi to all the vertices on this

chain other than xi-1 and xi+1. This results in the only possible triangulation with a value of t0 =

O(n).

3. Finding a Diagonal in a Simple Polygon

A fundamental lemma that is often used to prove by induction that a polygon triangulation
always exists (which surprisingly is not true in three dimensions [RS]) and which forms the back-
bone of most triangulation algorithms concerns the existence of diagonals.

Lemma 1: Every simple n-gon P with n ≥ 4 can be partitioned into two sub-polygons in O(n) time
by inserting some diagonal of P.

Lemma 1 is elementary and quite straightforward to prove but since, surprisingly, so many
published proofs of it are incorrect, and since the result is a corner stone in almost all triangulation
algorithms we will include a detailed constructive proof of it below. But first we take a small de-
tour through some of the most frequent “trap-doors” encountered.

When students of computational geometry are first given the task of designing an algorithm
for triangulating a simple polygon they often propose the following (and in fact published) proce-
dure. (refer to Fig. 5 (a)) Find the vertex of P which has minimum x-coordinate; call it xi. If int[xi-

1,xi,xi+1] contains no other vertices of P then insert the diagonal [xi-1,xi+1]. Otherwise find the ver-

- 8 -

Fig. 4 (a) (b) Two very different triangula-
tions of a convex polygon.

xi

xi+1

xi+2

xi+3

(a) (b)

xi

xi+2 xi+4

xi-2

classes since they are relevant to a complexity-based comparison of the algorithm proposed here
with other adaptive algorithms.

 Consider the anthropomorphic polygon illustrated in Fig. 4 (c). A simple polygon P is
called anthropomorphic provided it contains precisely two ears and one mouth [To2]. A principal
vertex xi of a simple polygon P is called a mouth if the diagonal [xi-1,xi+1] is an external diagonal,

i.e., the interior of [xi-1,xi+1] lies in the exterior of P. Surprisingly, although anthropomorphic

polygons are quite structured in some ways, they are quite general in other ways. Fig. 4 (c) illus-
trates an uncomplicated anthropomorphic polygon. Shermer [Sh2] has considered the problem of
generating more complex anthropomorphic polygons. The crucial aspect for our purpose here is
that for an anthropomorphic polygon t0 = 0 for all its triangulations. This is so because the dual-

tree of every triangulation of a two-ear polygon is a chain, i.e., a tree in which all its nodes are of
degree either one or two. This suggests that the extreme values of t0 over all triangulations of a

given polygon may be more appropriate measures of the shape of a polygon in certain applications.
In this case, for example, since the minimum value of t0 for any convex polygon is zero, both poly-

gons in Figs. 4 (a) and (b) would have the same shape complexity.

It is also possible that a polygon will admit only a single triangulation and that its value of
t0 = O(n). Such a family is illustrated in Fig. 4 (d). Let the vertices xi-1, xi, xi+1 have coordinates

(0,1), (0,-1), and (1,0), respectively and insert edges [xi-1,xi] and [xi,xi+1]. Place two thirds of the

remaining n-3 vertices on C, the smaller of the two arcs of a unit circle centered at (1,1). Starting
with the first of these vertices, connect with an edge each adjacent alternating pair and call these
vertices “red.” Finally, place the remaining vertices, called “blue,” sufficiently far from this cir-
cular arc C such that each of them is connected to a pair of adjacent red vertices on C not yet con-
nected to each other such that no blue vertex is visible from xi. Recall that two points x,y in P are

visible from each other if the line segment [x,y] lies in P.

- 7 -

borescence or “branchiness.” Is a tree like a palm tree or more like an oak? Is it locally very dif-
ferent and smoother than it is globally or is it self-similar in the way fractals [Ma] are? There are
a variety of methods of quantitatively measuring such fragmentation. The degree of a node in a
tree is an integer that indicates the number of edges emanating from that node. In a tree that is the
dual of a polygon triangulation the nodes are all of degree one, two, or three. For our purposes a
good measure of the amount of branching in a tree is its number of nodes of degree three. Let ti
denote the number of triangles in a triangulated polygon T(P) that share i edges with P. It is clear
that t0, which we also refer to as the number of “free” triangles in T(P), corresponds to the number

of nodes of degree three in the dual tree of T(P). Thus t0 is a very natural measure of the complexity

of a triangulation. This is not to say that it is necessarily a good measure of the shape-complexity
of P. Consider for example a convex polygon triangulated in two distinct ways illustrated in Figs.
4 (a) and (b). In Fig. 4 (a) the polygon is triangulated by adding edges from an anchor vertex xi to

xj for j=i+2, i+3,..., i-2. This procedure yields a triangulation with t0 = 0. In Fig. 4 (b) the triangu-

lation is obtained by first connecting the anchor vertex to all alternating vertices starting at xi+2,

i.e., xi is joined to xj for j=i+2, i+4, i+6,..., i-2, and subsequently adding edges between all pairs of

vertices (xk, xk+2) for k=i+2, i+4,..., i-4. This procedure, unlike the previous method, yields a trian-

gulation with t0 = O(n). From this example it may appear at first glance that the value of t0 is a

property exclusively of the algorithm used to triangulate the polygon and that therefore it plays a
somewhat artificial role in measuring the complexity of the algorithm particularly if the algorithm
makes no explicit attempt to yield a triangulation that minimizes t0. However this is in fact not

true. Nevertheless the relation between t0 and the shape of the input polygon is a subtle one. Fur-

thermore, there exist classes of polygons with restricted shapes for which all their triangulations
have a value of t0 either exclusively zero or exclusively O(n). We will now illustrate two such

2

1

0
1

1

2

2
1 1

2

0

Fig. 3 A triangulation (solid lines) of a simple polygon P, its dual tree (dot-
ted lines), and the integer value ti associated with each triangle.

- 6 -

3. if triangle (PRED(xj),xj,SUCC(xj)) contains no vertex of R then

4. return true
5. else return false
6. else return false
End IsAnEar

In May 1990 Bernard Chazelle finally showed that a simple polygon of n vertices could be
triangulated in O(n) time [Ch2]. This discovery is a significant theoretical breakthrough. As a re-
sult there is not much merit from the theoretical time-complexity point of view in proposing algo-
rithms that are adaptive and only sometimes run in O(n) time unless they contribute also to a new
theoretical perspective. However, Chazelle’s linear time algorithm appears to be difficult to pro-
gram and thus it is not clear presently if it will have practical consequences. In this light the adap-
tive algorithm just described and the one proposed in this paper constitute contributions to the prac-
tical efficiency of triangulating polygons. These algorithms are easy to describe and program and
they run fast in practice.

In this paper we describe a new algorithm for triangulating a simple n-sided polygon. The
algorithm runs in time O(n(1+t0)), with t0 < n. The quantity t0 measures the complexity of the trian-

gulation delivered by the algorithm. More precisely t0 is the number of triangles in the output trian-

gulation obtained that share zero edges with the input polygon and is related to the shape-complexi-
ty of the polygon. Although the worst-case complexity of the algorithm is O(n2), for several class-
es of polygons it runs in linear time. The practical advantages of the algorithm are that it is
extremely simple and does not require sorting or the use of balanced tree structures. On the theo-
retical side it is of interest because it is the first polygon triangulation algorithm whose computa-
tional complexity is a function of the output complexity. Section 2 discusses a new measure that
we propose as the complexity of a triangulation of a polygon. The algorithm is presented in Sec-
tions 3 & 4 and some concluding remarks are offered in Section 5.

2. A Measure of the Complexity of a Triangulation

The graph theoretical dual of every polygon triangulation is a tree (see Fig. 3). The nature
of a tree suggests a rather natural measure of its shape complexity, namely, its fragmentation, ar-

x0

x1

x4

x7

x6x5x2

x11

x10 x9

x8

x3

Fig. 2 Illustrating ALGORITHM Triangulate(P).

- 5 -

tested is x6. It is found to be an ear and cut. Again x4 is tested and this time it is an ear so it is cut.

The remaining vertices will be cut in the order x7, x3, x8,x2, x9, x1.

ALGORITHM Triangulate(P): The algorithm takes as input a simple polygon P = [x1,x2,...,xn],

stored as a doubly linked circular list. SUCC(xi) and PRED(xi) indicate the successor and prede-

cessor of xi respectively. The algorithm produces a set D of diagonals comprising a triangulation

of P. R is a set containing all the concave vertices of P. IsAnEar(P,R,xi) is a function which returns

true if xi is an ear in polygon P and false otherwise.

1. xi ← x2;

2. while (xi is not equal to x0) do

3. if (IsAnEar(P,R,PRED(xi)) and P is not a triangle then {PRED(xi) is an ear.}

4. D ← D ∪ (PRED(PRED(xi)),xi) {Store a diagonal.}

5. P ← P - PRED(xi) {Cut the ear.}

6. if xi ∈ R and xi is a convex vertex then {xi has become convex.}

7. R ← R -xi

8. if PRED(xi) ∈ R and PRED(xi) is a convex vertex then {PRED(xi) has become

9. R ← R - PRED(xi) convex.}

10. if (PRED(xi) = x0) then {SUCC(x0) was cut.}

11. xi ← SUCC(xi) {Advance the scan.}

12. else xi ← SUCC(xi) {PRED(xi) is not an ear or P is a triangle. Advance the scan.}

13. end while
END Triangulate

FUNCTION IsAnEar(P,R,xi)

1. if R = ∅ then return true {P is a convex polygon}
2. else if xj is a convex vertex then

u v
Fig. 1(b): A polygon edge-visible from uv with
a sinuosity of O(n).

- 4 -

b

c

d

e

Finally we mention a new adaptive algorithm discovered recently [KET] that is based on
the Graham scan. The Graham scan is a fundamental backtracking technique in computational
geometry which was originally designed to compute the convex hull of a set of points in the plane
[Gr] and has since found application in several different contexts. In [KET] it is shown how to use
the Graham scan to triangulate a simple polygon in O(kn) time where k-1 is the number of concave

vertices in P. Although the worst case running time of the algorithm is O(n2) and hence not as good
asymptotically as the algorithm of Hertel & Mehlhorn, it is much easier to implement and is the-
refore of practical interest. In fact, together with the algorithm presented in this paper it is probably
the best way to go in practice. A simple test to determine for a given polygon what the value of k
is will determine which algorithm to use. If k is small use the [KET] algorithm, if it is large use
the algorithm proposed in this paper. For completeness and availability we include a full descrip-
tion of this algorithm. For a proof of correctness and a complexity analysis the reader is referred
to [KET].

The algorithm adapts the Graham scan in the following manner. The vertices of the polygon
are scanned in order starting with x2. At each step the current vertex is tested to see if it is the top

of an ear. If it is not the top of an ear then the current vertex is advanced. If it is the top of an ear
then the ear is cut off; that is, a diagonal is added to the triangulation and a vertex is deleted from
the polygon. The current vertex is not advanced in this case except in the special case that the ear
is the vertex following x0. This prevents x0 from being cut as an ear.

To illustrate the execution of the algorithm consider the polygon in Fig. 2. Initially, the al-
gorithm tests x1 and determines that it is not an ear (note that this is equivalent to testing whether

x2 is the top of an ear). The scan is advanced through x2, x3, x4 and x5 at which time x5 is deter-

mined to be an ear. Next x5 is cut and then x4 is tested and found not to be an ear. The next vertex

Fig. 1(a): This fairly complicated-looking polygon has a sinuosity of
only five. Scanning starts at a in a clockwise fashion.

a

- 3 -

polygons [LC], weakly-externally-visible polygons [El], palm-shaped polygons [ET], and anthro-
pomorphic polygons [To2]. In yet another approach to the problem researchers designed adaptive
algorithms that run fast in many situations. Hertel & Mehlhorn [HM] have described a sweep-line
based algorithm that performs better the fewer reflex vertices it has. The running time of their
method is O(n + r log r) where r denotes the number of reflex vertices of P. Hertel & Mehlhorn’s
algorithm takes the first step towards obtaining an adaptive algorithm sensitive to the shape of the
polygon. Unfortunately r is not a truly relevant measure of the shape complexity. To see this it is
sufficient to realize that given any polygon of no matter what shape it is a trivial matter to insert n
vertices (one between every original pair) and pull them an infinitesimal amount towards the inte-
rior of the polygon. Such a transformation will make r proportional to n without changing the basic
shape of the polygon.

Chazelle and Incerpi [CI] took a further step to achieve a time complexity that more faith-
fully reflects the shape complexity of the polygon. They describe a triangulation algorithm that
runs in time O(n log s) with s < n. The quantity s measures the sinuosity of the polygon, i.e., the
number of times the polygon’s boundary alternates between complete spirals of opposite orienta-
tion. Unlike r, s has the advantage that in many practical situations it is very small or a constant
even for very winding polygons. Consider the motion of a straight line L[xi,xi+1] passing through

edge [xi,xi+1] as i goes from 1 to n-1. Every time L[xi,xi+1] reaches the vertical position in a clock-

wise (respectively counter-clockwise) manner we increment (respectively decrement) a winding-
counter by one. L[xi,xi+1] is said to be spiraling (respectively anti-spiraling) if the winding

counter is never decremented (respectively incremented) twice in succession. In this way the poly-
gon may be decomposed easily in O(n) time into spiraling and anti-spiraling polygonal chains. An
example of a polygon with a sinuosity of five is shown in Fig. 1(a). Note that a new polygonal
chain is restarted only when the previous chain ceases to be spiraling or anti-spiraling. The sinu-
osity s of P is defined as the number of polygonal chains thus obtained.

The Chazelle-Incerpi algorithm is much more interesting theoretically than the algorithm
of Hertel & Mehlhorn because of the implications it has on the complexity of triangulating diffe-
rent known classes of polygons. Since r, the number of reflex vertices, is independent of whether
a polygon is monotonic, star-shaped, edge-visible or whatever, Hertel & Mehlhorn’s algorithm can
run in O(n log n) time for these classes of polygons for which linear time algorithms are known.
On the other hand star-shaped polygons have a sinuosity of one and thus the Chazelle-Incerpi al-
gorithm runs in linear time for these polygons. Furthermore the algorithm makes no use of the ker-
nel of P. In [SV] and [WS] a point in the kernel is required and this implies a non-trivial (although
linear time) effort. For a completely different and extremely simple algorithm for triangulating a
star-shaped polygon without making use of the kernel of P see [ET1] or [ET2]. However, the sin-
uosity is not completely satisfactory as a measure of the shape complexity. It has the disconcerting
property that it can vary by an order of magnitude depending on the orientation of the input poly-
gon. Consider the edge-visible polygon illustrated in Fig. 1(b). Recall that a polygon P is edge
visible if there exists an edge [u,v] of P such that for each point x in P there exists a point y in [u,v]
such that the line segment [x,y] lies in P. The sinuosity for the polygon in Fig. 1(b) is O(n) and
thus the Chazelle-Incerpi algorithm runs in O(n log n) time on this polygon whereas a linear-time
algorithm exists [TA]. Furthermore by rotating the polygon through an angle of 90 degrees the
sinuosity reduces to O(1). This represents an order of magnitude change in the sinuosity of P for
no change in the shape of P (naturally we assume shape is invariant under translation and rotation).

- 2 -

non-overlapping triangles (their interiors do not intersect) without adding new vertices. Mathema-
ticians have been interested in constructive proofs (algorithms) of the existence of triangulations
for simple polygons as early as 1911 [Le]. The “algorithm” of Lennes [Le] works by recursively
inserting diagonals between pairs of vertices of P and runs in O(n2) time. Since then this type of
“algorithm” has reappeared in a score of papers and text books during the past seventy years very
often and surprisingly containing fundamental errors. See the paper by Chung-Wu Ho [Ho] for a
series of counter-examples to published triangulation “proofs.” A rather different inductive proof
was offered more recently by Meisters [Me]. He proposed a method based on searching for “ears”
and “cutting” them off. We call a vertex xi of polygon P a principal vertex provided that no vertex

of P lies in the interior of the triangle [xi-1,xi,xi+1] or in the interior of the diagonal [xi-1,xi+1]. A

principal vertex xi of a simple polygon P is called an ear if the diagonal [xi-1,xi+1] that bridges xi

lies entirely in P. We say that two ears xi and xj are non-overlapping if int[xi-1,xi,xi+1] ∩ int[xj-

1,xj,xj+1] = ∅. The following Two-Ears Theorem was proved by Meisters [Me].

Theorem: (the Two-Ears Theorem, Meisters [Me]) Except for triangles every simple polygon P
has at least two non-overlapping ears.

A straightforward implementation of this idea leads to a complexity of O(n3). However, it
was recently discovered that a prune-and-search technique will actually find an ear in linear time
thus yielding an O(n2) implementation of Meisters’ algorithm [EET]. A good subpolygon of a sim-
ple polygon P, denoted by GSP, is a subpolygon whose boundary differs from that of P in at most
one edge. A proper ear of a good subpolygon GSP is an ear of GSP which is also an ear of P. One
of the key observations in [EET] is that a good subpolygon has at least one proper ear. The strategy
of their algorithm is as follows. Given a polygon P on n vertices, split it in O(n) time into two sub-
polygons such that one of these subpolygons is a good subpolygon with at most ⎣n/2⎦ + 1 vertices.
This splitting step is the crucial step in the algorithm. Subsequently, apply the algorithm recursive-
ly to this good subpolygon which is guaranteed to have a proper ear. The worst case running time
of the algorithm is given by the recurrence T(n) = cn + T(⎣n/2⎦ + 1), where c is a constant, which
has solution T(n) ∈ O(n).

The first algorithm to break the O(n2) upper bound was that of Garey, Johnson, Preparata
& Tarjan [GJPT]. Their algorithm runs in time O(n log n) which is the time required by the first
step to decompose the polygon into monotone sub-polygons. Then they apply an algorithm for tri-
angulating monotone polygons in linear time. Note that a simpler linear-time algorithm for the lat-
ter problem is now available [To1]. An alternate decomposition method with the same complexity
appears in [FM]. An entirely different divide-and-conquer approach by Chazelle [Ch1] also
achieves an O(n log n) upper bound. Finally this upper bound was reduced even further by Tarjan
& Van Wyk [TV]. With very complicated and sophisticated data structures they are able to trian-
gulate a simple polygon in O(n log log n) time. However, recently the same complexity was dem-
onstrated using simple data structures [KKT].

Until May 1990 [Ch2]one of the most outstanding open problems in computational geo-
metry has been to determine if a simple polygon can be triangulated in O(n) time. As an alternative
some researchers searched for large classes of polygons that can be triangulated in linear time.
Such classes include monotone polygons [GJPT],[To1], star-shaped polygons [SV],[WS], edge-
visible polygons [TA], spiral polygons [FP],[T3], L-convex polygons [EAT], intersection-free

- 1 -

 Efficient Triangulation of Simple Polygons

 Godfried Toussaint

School of Computer Science
McGill University

3480 University Street
 Montreal, Quebec
Canada H3A 2A7

ABSTRACT

This paper considers the topic of efficiently triangulating a simple polygon with
emphasis on practical and easy-to-implement algorithms. It also describes a new
adaptive algorithm for triangulating a simple n-sided polygon. The algorithm runs
in time O(n(1+t0)), with t0 < n. The quantity t0 measures the shape-complexity of

the triangulation delivered by the algorithm. More precisely t0 is the number of tri-

angles contained in the triangulation obtained that share zero edges with the input
polygon and is, furthermore, related to the shape-complexity of the input polygon.
Although the worst-case complexity of the algorithm is O(n2), for several classes of
polygons it runs in linear time. The practical advantages of the algorithm are that it
is simple and does not require sorting or the use of balanced tree structures. On the
theoretical side it is of interest because it is the first polygon triangulation algorithm
the computational complexity of which is a function of the output complexity. As
a side benefit we introduce a new measure of the complexity of a polygon triangu-
lation that should find application in other contexts as well.

Key words: polygon, algorithm, triangulation, computational geometry, geometric
complexity

1. Introduction

 We are concerned with triangulating a special type of polygon in the Euclidean plane E2

referred to as a simple (also Jordan) polygon. For any integer n ≥ 3, we define a polygon or n-gon
in the Euclidean plane E2 as the figure P = [x1,x2,...,xn] formed by n points x1,x2,...,xn in E2 and n

line segments [xi,xi+1], i=1,2,...,n-1, and [xn,x1]. The points xi are called the vertices of the polygon

and the line segments are termed its edges. A polygon P is called a simple polygon provided that
no point of the plane belongs to more than two edges of P and the only points of the plane that be-
long to precisely two edges are the vertices of P. A simple polygon has a well defined interior and
exterior. We will follow the convention of including the interior of a polygon when referring to P.

Our problem is that of constructing a triangulation of P, i.e., decomposing P into a set of

